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ABSTRACT
Machine Learning (ML) adoption in the enterprise requires simpler
and more efficient software infrastructure—the bespoke solutions
typical in large web companies are simply untenable. Model scoring,
the process of obtaining prediction from a trained model over new
data, is a primary contributor to infrastructure complexity and cost,
as models are trained once but used many times.

In this paper we propose HUMMINGBIRD, a novel approach to
model scoring, which compiles featurization operators and tradi-
tional ML models (e.g., decision trees) into a small set of tensor
operations. This approach inherently reduces infrastructure com-
plexity and directly leverages existing investments in Neural Net-
works’ compilers and runtimes to generate efficient computations
for both CPU and hardware accelerators. Our performance results
are surprising: despite replacing sparse computations (e.g., tree
traversals) with dense ones (tensor operations), HUMMINGBIRD
is competitive and even outperforms (by up to 3×) hand-crafted
kernels on micro-benchmarks, while enabling seamless end-to-end
acceleration (with a speedup of up to 1200×) of ML pipelines.
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1. INTRODUCTION
Enterprises increasingly look to Machine Learning (ML) to help

solve business challenges that escape imperative programming and
analytical querying—examples include predictive maintenance, cus-
tomer churn prediction and supply-chain optimizations [36]. To
do so, they typically turn to technologies now broadly termed “tra-
ditional ML”, a term coined to contrast them with Deep Neural
Networks (DNNs). A recent analysis by Amazon Web Services
found that 50 to 95% of all machine learning applications in an
organization are based on traditional ML [29]. Our own analy-
sis [57] of 6M notebooks in public GitHub repositories, as well
∗The work was done while the author was at Microsoft.
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as Microsoft’s internal use of ML.NET [27], paints a similar pic-
ture: NumPy [62], Matplotlib [10], Pandas [51] and scikit-learn [55]
are the four most used libraries. All four provide functions for
traditional ML. As a point of comparison with DNN frameworks,
scikit-learn is roughly 5× more prominent than PyTorch [54] and
TensorFlow [12] combined, and is growing faster than both.

When it comes to owning and operating ML solutions, enter-
prises differ from early adopters in their focus on long-term costs of
ownership and amortized return on investments [60]. As such, enter-
prises are highly sensitive to: (1) complexity, (2) performance, and
(3) overall operational efficiency of their software infrastructure [13].
In each of those regards, model scoring (the process of presenting
a trained model with new data to get a prediction) is a key driving
factor. Regarding complexity of software infrastructure, models are
scored in a variety of environments, and thus scoring dominates
the complexity due to portability, maintainability, deployment, and
monitoring concerns. With respect to performance, model scoring
is often in the critical path of interactive or analytical enterprise
applications. Hence, latency and throughput for scoring models are
important concerns for enterprises. Finally, looking at total cost of
ownership of a data science solution, model scoring is responsible
for 45-65% of all costs. This is true even when considering sim-
ple cloud-native solutions, including support personnel costs, and
model building/exploration costs [29]. In short, the reason to focus
on model scoring is simple: most models are trained infrequently, in
an offline fashion in resource-rich/uniform cloud environments, but
they are scored many times and deployed in performance-critical,
diverse environments (e.g., scale-out batch or interactive serving,
personal computers, mobile and IoT devices).
The Underlying Challenge. Now that we established model scor-
ing as a primary source of complexity and cost for ML deployments,
we zoom in to search for core underlying challenges. We begin
by observing that the output of the iterative process of designing
and training traditional ML models is not just a trained model but
a predictive pipeline: A DAG of operators that typically include:
(1) featurizers, which could be either stateless imperative code (e.g.,
string tokenization) or data transformations fit to the data (e.g.,
min/max normalization); and (2) models, commonly decision tree
ensembles or (generalized) linear models, fit to the data. Typical
pipelines contain up to tens of operators out of a set of multiple
hundreds [57]. It is important to notice that a prediction can only
be rendered using the whole pipeline as it was fit to the training
data. Moreover, today’s featurizer and model implementations are
not expressed in a shared logical abstraction, but rather in an ad-hoc
fashion using programming languages such as R, Python, Java, C++
or C#. This hints to the core problem with today’s approaches to
model scoring: the combinatorial explosion of supporting many
operators (and frameworks) across multiple target environments.
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Figure 1: Model scoring software complexity: state-of-the-art (top) VS
HUMMINGBIRD (bottom).

Figure 1 highlights this visually by showing how existing so-
lutions lead to an O(N ×M) explosion to support N operators
from various ML frameworks against M deployment environments
(e.g., how to run a scikit-learn model on an embedded device?).
Furthermore, in [57] we show that the number of libraries used in
data science (a metric correlated to N ) is still increasing—a roughly
4× growth in the last 2 years. Our expectation is that M is also
destined to grow as ML is applied more and more widely across a
broad range of enterprise applications and hardware (e.g., [14, 1, 38,
40, 6]). From the vantage point of implementing runtimes for model
scoring, this is a daunting proposition. In fact, we argue that any
brute-force approach tackling all combinations directly would dilute
engineering focus leading to costly and less optimized solutions. It
is paramount to bypass the N ×M explosion somehow.
Our solution. HUMMINGBIRD leverages compiler/optimizer tech-
niques to translate a broad set of traditional ML operators into a
small set of K core operators, reducing the cost to O(N)+O(K ×
M) as shown in Figure 1. This key intuition is also behind the
design of the ONNX model format [22], and its various runtimes [5].
With HUMMINGBIRD we take one further bold step, and demon-
strate that this set of core operators can be reduced to tensor com-
putations and therefore be executed over DNN frameworks. This
allows us to piggyback on existing (massive) investments in DNN
compilers/runtimes/specialized-hardware to cover the “running K
operators across M environments” part of our challenge, reducing
the infrastructure complexity to support traditional ML to justO(N)
operator translations. Additionally, this cost can be absorbed by
each of the input frameworks, as no central coordination or stan-
dardization is necessary.1 This translates to reduced infrastructure
complexity, improved resource efficiency, and better portability.
Contributions. While the journey to a hardened product is ongoing,
in this paper we answer three fundamental research questions:

1As we work on open-sourcing HUMMINGBIRD we are in fact
engaging with ONNX-Runtime, TVM, ML.NET and scikit-learn
OSS communities.

1. Can traditional ML operators (both linear algebra-based such
as linear models, and algorithmic ones such as decision trees)
be translated to tensor computations?

2. Can the resulting (dense) computations in tensor space be
competitive with the (sparse) imperative alternatives we get
as input (e.g., traversing a tree)?

3. Can HUMMINGBIRD help in reducing software complexity
and improving model portability?

The results are surprising as we answer all the above questions
positively. To do so, we: (1) port thousands of benchmark predictive
pipelines to two DNN backends; (2) show that we can seamlessly
leverage hardware accelerators and deliver speed-ups of up to 3×
against hand-crafted GPU kernels, and up to 1200× against CPU
state-of-the-art—on average this could translate to 25 to 50× low-
ered scoring infrastructure costs for batch scenarios; and (3) qualita-
tively confirm improvements in software complexity and portability
by showing that we can run scikit-learn predictive pipelines across
CPUs, GPUs (and IPUs [14]) with less than 5K lines of code.
Organization. The remainder of this paper is organized as follows:
Section 2 contains ML and DNN background, while Section 3
contains an overview of the HUMMINGBIRD system. Section 4
describes some operator implementations and optimizations; the
experimental evaluation is in Section 5. The paper ends with related
work and conclusions, respectively in Sections 6 and 7.

2. BACKGROUND AND CHALLENGES
We first provide necessary background on traditional ML and

DNNs. We then explain the challenges of compiling traditional ML
operators and predictive pipelines into tensor computations.

2.1 Traditional ML and DNNs
Traditional predictive pipelines. The result of the data science
workflow over traditional ML are predictive pipelines, i.e., Directed
Acyclic Graphs (DAGs) of operators such as trained models, pre-
processors, featurizers, missing-value imputers. The process of
presenting a trained predictive pipeline with new data to obtain
a prediction is referred to in literature interchangeably as: model
scoring/inference/serving, pipeline evaluation, or prediction serving.
We favor model scoring in our writing, but at times use some of the
above alternatives.

Packaging a trained pipeline into a single artifact is common prac-
tice [27]. These artifacts are then embedded inside host applications,
or containerized and deployed in the cloud to perform model scor-
ing [56, 33]. ML.NET (.NET-based), scikit-learn (Python-based),
and H2O (Java-based) are popular toolkits to train and generate
pipelines. However, it is important to note that they are primarily op-
timized for training, not for scoring. Scoring predictive pipelines is
challenging, as their operators are implemented in imperative code,
and do not follow a shared logical or physical abstraction. Support-
ing every operator in all target environments requires huge effort:
this is why these frameworks have typically limited portability.
DNNs. Deep Neural Networks (DNNs) are a family of ML models
that are based on artificial neurons [37]. They take raw features
as input and perform a series of transformation operations. Unlike
traditional ML where the ML transformations are complex and di-
verse, transformations in DNNs are drawn from a small set of simple
tensor transformations (e.g., generic matrix multiplication, element-
wise ops). Hence, an entire DNN can be represented using a DAG
of tensor operators. In recent years, DNNs have been extremely
successful in vision and natural language processing tasks [45, 35].
Common frameworks used to author and train DNNs are Tensor-
Flow [12], PyTorch [54], CNTK [9], and MXNet [11]. While these
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frameworks can also be used to perform model scoring, next we
discuss systems specifically designed for that.
Runtimes for DNN Model Scoring. To cater to the demand for
DNN model inference, a new class of systems has emerged. ONNX
Runtime (ORT) [4], TorchScript [7], and TVM [31] are popular
examples of such systems. These capitalize on the relative com-
putational simplicity of neural networks: they accept a DAG of
tensor operations as input, which they execute by implementing
a small set of highly optimized operator kernels on multiple hard-
wares. Focusing on just the prediction serving scenario also enables
these systems to perform additional inference-specific optimizations,
which are not applicable for training. HUMMINGBIRD is currently
compatible with all such systems, but we focus our experiments on
PyTorch/TorchScript and TVM as runtimes backends.

2.2 Challenges
HUMMINGBIRD combines the strength of traditional ML pipelines

on structured data [48] with the computational and operational sim-
plicity of DNN runtimes for model scoring. To do so, it relies on
a simple yet key observation: once a model is trained, it can be
represented as a prediction function transforming input features into
a prediction score (e.g., 0 or 1 for binary classification), regardless
of the training algorithm used. The same observation naturally ap-
plies to featurizers fit to the data. Therefore, HUMMINGBIRD only
needs to compile the prediction functions (not the training logic) for
each operator in a pipeline into tensor computations and stitch them
appropriately. Towards this goal, we identify two key challenges.

Challenge 1: How can we map traditional predictive pipelines
into tensor computations? Pipelines are generally composed of
operators (with predictive functions) of two classes: algebraic (e.g.,
scalers or linear models), and algorithmic (e.g., one-hot encoder
and tree-based models). While translating algebraic operators into
tensor computations is straightforward, the key challenge for HUM-
MINGBIRD is the translation of algorithmic operators. Algorithmic
operators perform arbitrary data accesses and control flow decisions.
For example, in a decision tree ensemble potentially every tree is dif-
ferent from each other, not only with respect to the structure but also
the decision variables and the threshold values. Conversely, tensor
operators (such as matrix multiplication, element-wise operations)
perform bulk operations over the entire set of input elements.

Challenge 2: How can we achieve efficient execution for tensor-
compiled traditional ML operators? The ability to compile pre-
dictive pipelines into DAGs of tensor operations does not imply
adequate performance of the resulting DAGs. In fact, common
wisdom would suggest the opposite: even though tensor runtimes
naturally support execution on hardware accelerators (e.g., GPUs,
IPUs, TPUs [40], ASICs), tree-based methods and commonly used
data transformations are well known to be difficult to accelerate [32]
even using custom-developed implementations.

3. SYSTEM OVERVIEW
In this section we explain our high-level approach to overcome the

challenges outlined in Section 2.2, and present HUMMINGBIRD’s
architecture and some implementation details. We conclude this
section by explaining the assumptions and limitations of our work.

3.1 High-level Approach
In HUMMINGBIRD, we cast algorithmic operators into tensor

computations by introducing a degree of redundancy, which includes
both computational redundancy and storage redundancy. With
computational redundancy, we perform computations for more than
what is needed for optimal execution. With storage redundancy
we create data structures that store more than what we actually

need. These redundancies enable us to transform the arbitrary data
accesses and control flow of the original algorithmic operators into
bulk operations compilable into tensor computations.

Based on the level of redundancy introduced, different compila-
tion strategies are optimal. Therefore, different tensor implemen-
tations exist for a given traditional ML operator. We will discuss
the compilation strategies for representative operators in Section 4.
The tensor implementation to be used is informed by model charac-
teristics (e.g., tree-structure for tree-based models, or sparsity for
linear models) and runtime statistics (e.g., batch size of the inputs).
Heuristics at the operator level, runtime-independent optimizations
at the pipeline level, and runtime-specific optimizations at the exe-
cution level enable HUMMINGBIRD to further improve predictive
pipelines performance end-to-end. The dichotomy between runtime-
independent and -specific optimizations allow us to both (1) apply
optimizations unique to traditional ML, and not captured by the
DNN runtimes; and (2) exploit DNN runtime optimizations once
the traditional ML is lowered into tensor computations. Finally,
by compiling traditional predictive pipelines into tensor computa-
tions, HUMMINGBIRD is able to run end-to-end pipelines on all the
hardware platforms supported by the target tensor runtimes.
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Figure 2: High-level architecture of HUMMINGBIRD.

3.2 System Architecture and Implementation
The high-level architecture of HUMMINGBIRD is shown in Fig-

ure 2. HUMMINGBIRD has four main components: (1) Pipeline
Parser, (2) Optimizer, and (3) Tensor DAG Compiler. Given a pre-
dictive pipeline and a set of input parameters (i.e., batch size, input
type, target DNN runtime, target hardware device), the Pipeline
Parser generates an in-memory Intermediate Representation (IR) ob-
ject encoding each operator in the pipeline and related input/output
dependencies. The Optimizer then runs optimization passes over
the IR to produce a potentially modified IR. Furthermore, if there
is more than one potential compilation strategy for an operator, the
Optimizer annotates the IR with the compilation strategy to be used
for that specific operator given the input parameters. Afterwards, the
Tensor DAG Compiler picks the optimized IR object and compiles
it into tensor operations following the target DNN runtime format.
The runtime-specific optimizations are triggered at this level. Fi-
nally, the model is exported in the native format of the target runtime
for model prediction.

The current version of HUMMINGBIRD is implemented as an
extension of ONNXMLTools [16], and supports compiling scikit-
learn pipelines into PyTorch/TorchScript and TVM output formats.
HUMMINGBIRD’s IR and Pipeline Parser are based on an extension
of the IR and parser used in the skl2onnx converter [25]. HUM-
MINGBIRD currently supports over 40 scikit-learn operators (listed
in Table 1), which are compiled into a small set of tensor operators
(listed in Table 2 for the PyTorch runtime). Adding support for more
ML operators and other ML tools (e.g., ML.NET [27], H2O [8]) is
currently an ongoing work.

3.3 Assumptions and Limitations
In this paper, we make a few simplifying assumptions. First,

we assume that predictive pipelines are “pure” and do not contain
arbitrary user-defined operators. There has been recent work [58]
on compiling imperative UDFs into relation algebra, and we plan
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Table 1: Scikit-learn operators currently supported in HUMMINGBIRD.

Supported ML Models

LogisticRegression, SVC, NuSVC, LinearSVC, SGDClassi-
fier, LogisticRegressionCV, DecisionTreeClassifier/Regression,
RandomForestClassifier/Regression, ExtraTreesClassifier, Gra-
dientBoostingClassifier/Regression, XGBClassifier/Regression,
LGBMClassifier/Regression, HistGradientBoostingClassifier,
MLPClassifier, BernoulliNB, GaussianNB, MultinomialNB

Supported Featurizers

SelectKBest, VarianceThreshold, SelectPercentile, PCA, Ker-
nelPCA, TruncatedSVD, FastICA, SimpleImputer, Imputer,
MissingIndicator, ColumnTransformer, RobustScaler, MaxAb-
sScaler, MinMaxScaler, StandardScaler, Binarizer, KBinsDis-
cretizer, Normalizer, PolynomialFeatures, OneHotEncoder, La-
belEncoder, FeatureHasher

Table 2: PyTorch tensor operators used by the Tensor DAG Compiler.
matmul, add, mul, div, lt, le, eq, gt,
ge, &, |, �, �, bitwise_xor, gather,
index_select, cat, reshape, cast, abs,
pow, exp, arxmax, max, sum, relu, tanh,
sigmoid, logsumexp, isnan, where

to make use of such techniques in HUMMINGBIRD in the future.
Second, we do not support sparse data well. We found that current
support for sparse computations on DNN runtimes is primitive and
not well optimized. We expect advances in DNN frameworks to im-
prove on this aspect—TACO [43] is a notable such example. Finally,
although we support string operators, we currently do not support
text feature extraction (e.g., TfidfVectorizer). The problem
in this case is twofold: (1) compiling regex-based tokenizers into
tensor computations is not trivial, and (2) representing arbitrarily
long text documents in tensors remains an open challenge in general.

4. COMPILATION
HUMMINGBIRD currently supports compiling many representa-

tive algorithmic operators into tensor computations. Given their
popularity [57], in Sections 4.1 and 4.2 we explain our approach for
tree-based models. Section 4.3 gives a summary of other techniques
that we use for both algorithmic and arithmetic operators.

Table 3: Notation used in Section 4.1

Symbol Description

N, I, L, F,C Ordered lists with all nodes, internal nodes, leaf
nodes, features, and classes, respectively.

X ∈ Rn×|F | Input records (n is the number of records).

A ∈ R|F |×|I| Ai,j =

{
1, Ij evaluates Fi

0, Otherwise

B ∈ R|I| Bi = ThresholdValue(Ii)

C ∈ R|I|×|L| Ci,j =

−1, Lj ∈ RightSubTree(Ii)
1, Lj ∈ LeftSubTree(Ii)
0, Otherwise

D ∈ R|L| Dk =
∑

k∈L
path−−−→Root

1(k == LeftChild(Parent(k)))

E ∈ R|L|×|C| Ei,j =

{
1, Li

map to−−−−→ Cj

0, Otherwise

Strategy Memory Runtime

GEMM
O(|F ||N |+ O(|F ||N |+
|N |2 + |C||N |) |N |2 + |C||N |)

TreeTraversal O(|N |) O(|N |)
PerfectTreeTraversal O(2|N|) O(N)

Table 4: Worst-case memory and runtime analysis of different tree compila-
tion strategies, assuming the number of input records and number of trees
are fixed. The notation is explained in Table 3.

4.1 Compiling Tree-based Models
HUMMINGBIRD has three different strategies for compiling tree-

based models for classification tasks. Strategies differ based on
the degree of redundancy introduced. In Section 4.2, we explain
how HUMMINGBIRD picks the best strategy. Table 3 explains the
notation used in this section. We summarize the worst-case runtime
and memory footprints of each strategy in Table 4. HUMMINGBIRD
currently supports only trees built over numerical values: support
for missing and categorical values is currently under development.
For the sake of presentation, we assume all decision nodes perform
< comparisons.
Strategy 1: GEMM. We cast the evaluation of a tree as a series of
three GEneric Matrix Multiplication (GEMM) operations interleaved
by two element-wise logical operations. Given a tree, we create five
tensors which collectively capture the tree structure: A,B,C,D,
and E. A captures the relationship between input features and
internal nodes. B is set to the threshold value of each internal node.
For any leaf node and internal node pair, C captures whether the
internal node is a parent of that internal node, and if so, whether it
is in the left or right sub-tree. D captures the count of the internal
nodes in the path from a leaf node to the tree root, for which the
internal node is the left child of its parent. Finally, E captures
the mapping between leaf nodes and the class labels. Given these
tensors, Algorithm 1 presents how we perform tree scoring for a
batch of input recordsX . A graphical representation of an execution
of the GEMM strategy is depicted in Figure 3.

Algorithm 1 GEMM Strategy (Notation explained in Table 3)

Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0, 1}n×|C|, Predicted class labels
/* Evaluate all internal nodes */

T ← GEMM(X, A) // T ∈ Rn×|I|

T ← T < B // T ∈ Rn×|I|

/* Find the leaf node which gets selected */

T ← GEMM(T, C) // T ∈ Rn×|L|

T ← T == D // T ∈ Rn×|L|

/* Map selected leaf node to class label */

R← GEMM(T, E) // R ∈ Rn×|C|

The first GEMM is used to match each input features with the
internal node(s) using it. The following < operations is used to
evaluate all the internal decision nodes and produces a tensor of 0s
and 1s based on the false/true outcome of the conditions. The second
GEMM operation generates an encoding for the path composed by the
true internal nodes, while the successive == operation returns the
leaf node selected by the encoded path. Note that logical operators
will broadcast [19] B and D tensors to match the dimensions of the
other operand for performing element-wise operations. Finally, the
third GEMM operation maps the selected leaf node to the class label.
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Figure 3: Compiling an example decision tree using the GEMM strategy (algorithm 1).

While we explained this strategy in the context of a single tree and
a classification task, it is easily extended to support tree ensembles
and regression tasks too. For tree ensembles, we create the above
2-dimensional tensors for each tree and batch them together. As
the number of leaf nodes and internal nodes can vary among trees,
we pick the maximum number of leaf nodes and internal nodes for
any tree as the tensor dimensions and pad the smaller tensor slices
with zeros. During scoring, we invoke the batched variants of GEMM
and logical operations and perform a final ReduceMean operation
over the batched dimension to generate the ensemble output. For
regression tasks, we initialize E with label values.

Table 5: Additional notation used in Strategy 2: TreeTraversal

Symbol Description

NL ∈ Z|N| NLi =

{
LeftChild(Ni), Ni ∈ I
i,Otherwise

NR ∈ Z|N| NRi =

{
RightChild(Ni), Ni ∈ I
i,Otherwise

NF ∈ Z|N| NFi =

{
k, (Ni ∈ I) ∧ (Ni evaluates Fk)
1,Otherwise

NT ∈ R|N| NTi =

{
ThresholdValue(Ni), Ni ∈ I
0,Otherwise

NC ∈ Z|N|×|C| NCi,k=

{
1, (Ni ∈ L) ∧ (Ni

map to−−−−→ Ck)
0,Otherwise

Strategy 2: TreeTraversal. In the GEMM strategy, we incorporated
a high-degree of computational redundancy by evaluating all internal
nodes and leaf nodes when only a few of them actually need to be
evaluated. Here, we try to reduce the computational redundancy
by mimicking the typical tree traversal—but implemented using
tensor operations. In this strategy, the tree structure is captured by
five tensors: NL, NR, NF , NT , and NC . We formally define these
tensors in Table 5. The same column index (last dimension) across
all tensors corresponds to the same tree node. NL and NR capture
the indices of the left and right nodes for a given node. If the node
is a leaf node, we set these to the index of the given node. Similarly,
NF and NT capture the feature index and threshold value for each
node, respectively. For leaf nodes, we set NF to 1 and NT to 0.
Finally, NC captures the class label of each leaf node. For internal
nodes this can be any value; we set it to 0.

Given these tensors, Algorithm 2 presents how we perform scor-
ing for a batch of input records X . We use Gather and Where
operations which can be used to perform index-based slicing and
conditional value selection. These operators are available in most
modern tensor runtimes. We first initialize an index tensor TI corre-
sponding to all records in X , which points to the root node. Using
TI , we Gather the corresponding feature indices and use them

Algorithm 2 TreeTraversal Strategy (Notation in Tables 5)

Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0, 1}n×|C|, Predicted class labels
/* Initialize all records to point to k,

with k the index of Root node. */
TI ← {k}n // TI ∈ Zn

for i← 1 to TREE_DEPTH do
/* Find the index of the feature

evaluated by the current node. Then
find its value. */

TF ←Gather(NF , TI) // TF ∈ Zn

TV ←Gather(X,Tf ) // TV ∈ Rn

/* Find the threshold, left child and
right child */

TT ←Gather(NT , TI) // TT ∈ Rn

TL ←Gather(NL, TI) // TL ∈ Zn

TR ←Gather(NR, TI) // TR ∈ Zn

/* Perform logical evaluation. If true
pick from TL; else from TR. */

TI ←Where(TV < TT , TL, TR) // I ∈ Zn

end
/* Find label for each leaf node */
R←Gather(NC , TI) // R ∈ Zn

to Gather the corresponding feature values from X . Similarly,
we also Gather left node indices, right node indices, and node
thresholds. Using these gathered tensors, we then invoke a Where
operation which checks for the tree node decisions. Based on the
evaluation, for each record the Where operator either returns the
left child index or right child index. To perform full tree scoring,
the above steps have to be repeated until we reach a leaf node for
all records in X . We exploit the fact that (1) TREE_DEPTH is a
known property of the input model at compilation time, and (2) all
leaf nodes are at a depth ≤ TREE_DEPTH, to iterate for that fixed
number of iterations to ensure that all records have found their corre-
sponding leaf node. Tensors are created in such a way that if one of
the indices reaches a leaf node before running for TREE_DEPTH it-
erations, the same class label will keep getting selected. At compile
time, we unroll all iterations and remove the for loop to improve
efficiency. For ensembles, we create tensors for each tree and batch
them together. However, between trees the number of nodes and
dimensions may differ, so we use the maximum node count for any
tree as the dimension and pad the remaining elements with zeros.
Strategy 3: PerfectTreeTraversal. Similar to the previous strategy,
this strategy also mimics the tree traversal. However, here we
assume the tree is a perfect binary tree. In a perfect binary tree, all
internal nodes have exactly two children and all leaf nodes are at the
same depth level. Assume we are given a non-perfect binary tree
with a TREE_DEPTH ofD, andLk is a leaf node which is at a depth
of Dk < D. To push Lk to a depth D, we replace Lk with a perfect
sub-tree of depth D−Dk and map all the leaf nodes of the sub-tree
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to Ck: the label of the original leaf node. The decision nodes in
the introduced sub-tree are free to perform arbitrary comparisons as
the outcome is the same along any path. By pushing all leaf nodes
at depth < D to a depth of D, we transform the original tree to a
perfect tree with the same functionality.

Table 6: Additional notation used in Strategy 3: PerfectTreeTraversal

Symbol Description

I ′ ∈ Z2D−1

, L′ ∈ Z2D Internal and leaf nodes of the trans-
formed perfect tree ordered by level.

N ′F ∈ Z|I
′| N ′Fi

= k ⇐⇒ I ′i evaluates Fk

N ′T ∈ R|I
′| N ′Ti

= ThresholdValue(I ′i)

N ′C ∈ Z|L
′|×|C| N ′Ci,k

=

{
1, Ni

map to−−−−→Ck

0,Otherwise

Working on perfect trees enables us to get rid of NL and NR

tensors as we can now calculate them analytically, which also re-
duces memory lookup overheads during scoring. Thus we create
only three tensors to capture the tree structure: N ′F , N

′
T , and N ′C .

We explain these tensors formally in Table 6. They capture the
same information as NF , NT , NC but have different dimensions
and have a strict condition on the node order. Both N ′F and N ′T
have 2D−1 elements and the values correspond to internal nodes
generated by level order tree traversal. N ′C has 2D elements with
each corresponding to an actual leaf node from left to right order.

Algorithm 3 PerfectTreeTraversal Strategy (Notation in Tables 6)

Input :X ∈ Rn×|F |, Input records
Output :R ∈ {0, 1}n×|C|, Predicted class labels
/* Initialize all records to point to the

root node. */
TI ← {1}n // TI ∈ Zn

for i← 1 to TREE_DEPTH do
/* Find the index of the feature

evaluated by the current node. Then
find its value. */

TF ←Gather(NF , TI) // TF ∈ Zn

TV ←Gather(X,Tf ) // TV ∈ Rn

/* Find the threshold */
TT ←Gather(NT , TI) // TT ∈ Rn

/* Perform logical evaluation. If true
pick left child; else right child. */

TI ← 2× TI + Where(TV < TT , 0, 1) // I ∈ Zn

end
/* Find label for each leaf node */
R←Gather(N ′C , TI) // R ∈ Zn

Given these tensors, in Algorithm 3 we present how PerfectTree
Traversal works. From a high-level point of view, it is very similar
to the TreeTraversal strategy with only a few changes. First, the
index tensor TI is initialized to all ones as the root node is always
the first node. Second, we get rid of finding the left index and right
index of a node and using them in the Where operation. Instead,
the Where operation returns 0 for true case and 1 for the false case.
By adding this to 2× TI we get the index of the child for the next
iteration. For ensembles, we use the maximum TREE_DEPTH of
any tree as D for transforming trees to perfect trees. We create

tensors separate for each tree and batch them together for N ′C . But
for N ′F and N ′T instead of batching, we interleave them together
in some order such that values corresponding to level i for all trees
appear before values corresponding to level i+ 1 of any tree. This
enables better memory coalescing and improves performance.

4.2 Heuristics-based Strategy Selection
For a given classical ML operator, there can be more than one

compilation strategy available. In the previous section we just ex-
plained three such strategies for tree-based models. In practice, no
strategy consistently dominates the others, but each is preferable
in different situations based on the input and model structure. For
instance, the GEMM strategy gets significantly inefficient as the size
of the decision trees gets bigger because of the large number of
redundant computations. This strategy performs O(2D) (D is the
height of the tree) computations whereas the original algorithmic
operator needs to perform only O(D) comparisons. Nevertheless,
with small batch sizes or a large number of smaller trees, this strat-
egy can be actually performance-wise optimal on modern hardware,
where GEMM operations can run highly efficiently. With large batch
sizes and taller trees, TreeTraversal techniques typically outper-
form the GEMM strategy and PerfectTreeTraversal is slightly faster
than vanilla TreeTraversal due to the reduced number of index
lookups and better coalesced memory accesses. But if the trees are
too deep, we cannot implement PerfectTreeTraversal because the
O(2D) memory footprint of the associated data structures will be
prohibitive. In such cases, we resort to TreeTraversal.

The exact crossover point where GEMM strategy outperforms
TreeTraversal strategies is determined by the characteristics of the
tree model (e.g., number of trees, maximum depth of the trees),
runtime statistics (e.g., batch size), and the underlying hardware
(e.g., CPUs, GPUs). For instance, from our experiments (see Fig-
ure 7) we found that on CPUs the GEMM strategy performs better
for shallow trees (≤ 3 on CPU, ≤ 10 on GPU) or for scoring with
smaller batch sizes. For tall trees, using PerfectTreeTraversal when
D ≤ 10 gave a reasonable trade-off between memory footprint and
runtime, which leaves vanilla TreeTraversal the only option for very
tall trees (D > 10). These heuristics are currently hard-coded in
HUMMINGBIRD, but can be overridden by the user if necessary.

Recall that, in addition to heuristics, our approach also lever-
ages runtime-independent optimizations at the Optimizer level and
runtime-specific optimizations at the Tensor DAG Compiler level.
Due to space constraints, we discuss runtime-independent optimiza-
tions in the technical report [61]. We refer the interested readers to
[7, 31] for more details on runtime-dependent optimizations.

4.3 Summary of Other Techniques
Next, we discuss a few other techniques that we use across many

ML operators to efficiently compile them into tensor computations.
Exploiting Automatic Broadcasting. Broadcasting [19] is the pro-
cess of making two tensors shape compatible for element-wise
operations. Two tensors are said to be shape compatible if each
dimension pair is the same or one of them is 1. At execution time,
tensor operations implicitly repeat the size 1 dimensions to match
the size of the other tensor, without allocating memory for these ex-
pansions. In HUMMINGBIRD, we heavily use this feature to execute
some computation over multiple inputs. For example, consider per-
forming an one-hot encoding operation over column Xi ∈ Rn with
a vocabulary V ∈ Zm. In order to implement this using tensor com-
putations, we ReshapeXi to [n, 1] and V to [1,m] and calculate
R = Equal(X , V ), R ∈ {0, 1}n×m. The Reshape operations
are for free because they only modify the metadata of the original
tensor. However, this approach performs redundant comparisons as
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it essentially checks the feature values from all records against all
vocabulary values, which is different from an imperative approach.
Minimize Operator Invocations. Given two approaches to imple-
ment an ML operator we found that often times picking the one
which invokes fewer operators outperforms the other—even if it
performs extra computations. Consider a featurizer that generates
feature interactions. Given an input X ∈ Rn×d, with d = |F |,
it generates a transformed output R ∈ Rn× d·(d+1)

2 with Ri =
[X2

i,1, ..., X
2
i,d, Xi,1Xi,2, ...Xi,d−1Xi,d]. One way to implement

this operator is to compute each new feature separately by first
gathering the corresponding input feature columns, perform an
element-wise multiplication, and concatenate all new features.
However, this approach requires performing d2 + d+ 1 operations
and hence is highly inefficient due to high operator scheduling over-
heads. Alternatively, one could implement the same operator as fol-
lows. First, reshape X into X ′ ∈ Rn×d×1 and X ′′ ∈ Rn×1×d.
Then perform a batched GEMM using these inputs, which will create
R′ ∈ Rn×d×d. Finally, Reshape R′ to R′′ ∈ Rn×d2 . Notice that
each row in R′′ has all the values of the corresponding row in R,
but in a different order. It also has some redundant values due to
commutativity of multiplication (i.e., xixj = xjxi). Hence, we
perform a final Gather to extract the features in the required order,
and generate R. This approach in fact performs roughly twice the
computations than the previous approach and also increases the peak
memory footprint roughly by a factor of two. However, it enables
us to implement the feature interaction operator in just two tensor
operations which runs highly efficiently on tensor runtimes.
Avoid Generating Large Intermediate Results. While exploiting
automatic broadcasting becomes useful in many cases, in certain
cases it can become extremely inefficient due to the materializa-
tion of large intermediate tensors. Consider the Euclidean distance
matrix calculation, which is a popular sub-operation in many ML
operators (e.g., SVMs, KNearestNeighbor). Given two tensors
X ∈ Rn×d and Y ∈ Rm×d, the objective is to calculate tensor
D ∈ Rn×m, where Di,j = ||Xi − Yj ||22. Implementing this using
broadcasting requires first reshaping X to X ′ ∈ Rn×1×d, Y to
Y ′ ∈ R1×m×d, calculate (X ′ − Y ′) ∈ Rn×m×d, and perform a
final sum reduction over the last dimension. This approach causes
a size blowup by a factor of d in intermediate tensors. Alterna-
tively, a popular trick [28] is to use the quadratic expansion of
Di,j = ||Xi||22 + ||Yj ||22 − 2 ·XiY

T
j and calculate the individual

terms separately. This avoids generating a large intermediate tensor.
Fixed Length Restriction on String Features. Arbitrary lengths
of string features pose a challenge for HUMMINGBIRD. Strings are
commonly used for categorical features in traditional ML datasets,
and operators like one-hot encoding and feature hashing in tradi-
tional ML tools natively support string features. To support string
features, HUMMINGBIRD imposes a fixed length restriction with
the length being determined by the max size of any string in the
vocabulary. Vocabularies are generated during training and can be
accessed at compile time by HUMMINGBIRD. Fixed length strings
can then be encoded into an int8 data type and processed by tensor
runtimes.

5. EXPERIMENTAL EVALUATION
In our experimental evaluation we answer the following questions:

(1) how does HUMMINGBIRD perform for models from popular tree
ensemble algorithms such as XGBoost [30]? (2) Can we exploit
hardware accelerators to increase the performance of traditional ML
models and featurizers? (3) What are the performance trade-offs
introduced by the different tree implementations? (4) What is the
speedup introduced by HUMMINGBIRD for real world end-to-end

pipelines? To address the above questions, we report three micro-
benchmark experiments showing how HUMMINGBIRD performs
compared to current state-of-the-art for inference over (1) tree en-
sembles (Section 5.1.1); (2) other featurization operators and ML
models (Section 5.1.2); and (3) the need for heuristics for picking the
best tree-model implementation (Section 5.1.3). Finally, we carry
one end-to-end evaluation using complete pipelines (Section 5.2).
We evaluate both CPUs and hardware accelerators (GPUs).
Hardware and Software Setup. For all the experiments (except
explicitly stated otherwise) we used an Azure NC6 v2 machine
equipped with 112 GB of RAM, an Intel Xeon CPU E5-2690 v4 @
2.6GHz (6 virtual cores), and an Nvidia P100 GPU. It runs Ubuntu
18.04 with PyTorch 1.3.1, TVM 0.6, scikit-learn 0.21.3, XGBoost
0.9, ONNX runtime 1.0, RAPIDS 0.9, and CUDA 10. We run TVM
with opt_level 3 when optimizations do not fail; 0 otherwise.
Experimental Setup. We run all the experiment 5 times and report
the truncated mean by averaging the middle values. In the following,
we use ONNX-ML to indicate running an ONNX-ML (i.e., tradi-
tional ML part of the standard) on the ONNX runtime. Additionally,
we use bold numbers to highlight the best performance for the spe-
cific setup (CPU or GPU, record-at-a-time or batch). Note that both
scikit-learn and ONNX-ML do not support hardware acceleration.

5.1 Micro-benchmarks
5.1.1 Tree Ensembles

Setup. This experiment is run over a set of popular datasets used
for benchmarking gradient boosting frameworks [20]. We first do a
80%/20% train/test split over each dataset. Successively, we train
(over the 80% split) a scikit-learn’s random forest, XGBoost [30],
and LightGBM [42] model using the default parameters of the bench-
mark. Specifically, we set the number of trees to 500, and maximum
depth to 8. For XGBoost and LightGBM we use the scikit-learn API.
Note that each algorithm generates trees with different structures,
and this experiment helps with understanding how HUMMINGBIRD
behaves with various tree types and dataset scales. For example, XG-
Boost generates balanced trees, LightGBM mostly generates skinny
tall trees, while random forest is a mix between the two. Finally, we
run inference on the trained models over the test dataset using dif-
ferent batch sizes. We compare the results against HUMMINGBIRD
with different runtime backends, and a ONNX-ML version of the
model generated using ONNXMLTools [16]. When evaluating over
GPU, we also compared against NVIDIA RAPIDS Forest Inference
Library (FIL) [24]. We don’t compare against GPU implementations
for XGBoost or LightGBM because we consider FIL as state-of-
the-art [17]. For the batch experiments, we use all six cores in the
machine, while for record-at-a-time experiments we use one core.
We set a timeout of 1 hour for each experiment.

Table 7: Datasets used from the tree ensembles micro-benchmark

Datasets #Rows #Columns Task
Fraud 285K 28 Binary

Epsilon 500K 2000 Binary
Year 515K 90 Regression

CovType 581K 54 Multiclass
Higgs 11M 28 Binary
Airline 115M 13 Binary

Datasets. We used 6 of the 7 datasets from NVIDIA’s gbm-bench [20]
(Bosh contains missing values with HUMMINGBIRD currently does
not support). Each datasets is described in Table 7. The datasets
cover a wide spectrum of use-cases: from regression to multiclass
classification, from few hundred thousand rows to 100 million, and
from few tens of columns to 2000.
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Table 8: Batch Experiments (10K records at-a-time) for both CPU (6 cores) and GPU. Reported numbers are in seconds.

Algorithm Dataset
Baselines (CPU) Hummingbird CPU Baselines (GPU) Hummingbird GPU

Sklearn ONNX-ML PyTorch TorchScript TVM RAPIDS FIL TorchScript TVM

Rand. Forest

Fraud 2.5 7.1 8.0 7.8 3.0 not supported 0.044 0.015
Epsilon 9.8 18.7 14.7 13.9 6.6 not supported 0.13 0.13

Year 1.9 6.6 7.8 7.7 1.4 not supported 0.045 0.026
Covtype 5.9 18.1 17.22 16.5 6.8 not supported 0.11 0.047
Higgs 102.4 257.6 314.4 314.5 118.0 not supported 1.84 0.55
Airline 1320.1 timeout timeout timeout 1216.7 not supported 18.83 5.23

LightGBM

Fraud 3.4 5.9 7.9 7.6 1.7 0.014 0.044 0.014
Epsilon 10.5 18.9 14.9 14.5 4.0 0.15 0.13 0.12

Year 5.0 7.4 7.7 7.6 1.6 0.023 0.045 0.025
Covtype 51.06 126.6 79.5 79.5 27.2 not supported 0.62 0.25
Higgs 198.2 271.2 304.0 292.2 69.3 0.59 1.72 0.52
Airline 1696.0 timeout timeout timeout 702.4 5.55 17.65 4.83

XGBoost

Fraud 1.9 5.5 7.7 7.6 1.6 0.013 0.44 0.015
Epsilon 7.6 18.9 14.8 14.8 4.2 0.15 0.13 0.12

Year 3.1 8.6 7.6 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 121.7 79.2 79.0 26.4 not supported 0.62 0.25
Higgs 126.4 309.7 301.0 301.7 66.0 0.59 1.73 0.53
Airline 1316.0 timeout timeout timeout 663.3 5.43 17.16 4.83

List of Experiments. We run the following set of experiments:
(1) batch inference, both on CPU and GPU; (2) request/response
scenario where one single record is scored at a time; (3) scaling
experiments by varying batch sizes, both over CPU and GPU; (4)
evaluation on how HUMMINGBIRD behaves on different GPU gen-
erations; (5) dollar cost per prediction; (6) memory consumption;
(7) validation of the produced output wrt scikit-learn; and finally (8)
time spent on compiling scikit-learn models.
Batch Inference. Table 7 reports the inference time (in seconds)
for random forest, XGBoost and LightGBM models run over the 6
datasets. The batch size is set to 10K records. How performance
varies with the batch sizes will be described later in this section.
Looking at the CPU numbers from the table, we can see that:

1. Among the baselines, scikit-learn models outperform ONNX-
ML implementations by 2× to 3×. This is because ONNX-
ML is not currently optimized for batch inference.

2. Looking at the HUMMINGBIRD’s backends, there is not a
large difference between PyTorch and TorchScript, and in
general these backends perform comparable to ONNX-ML.

3. The TVM backend provides the best performance on 15 exper-
iments out of 18. In the worst case TVM is 20% slower (than
scikit-learn); in the best cases it is up to 2× faster compared
to the baseline solutions.

Let us look now at the GPU numbers of Table 7:
1. Baseline RAPIDS does not support random forest nor mul-

ticlass classification tasks. For the remaining experiments,
GPU acceleration is able to provide speedups of up to 300×
compared to CPU baselines.2

2. Looking at HUMMINGBIRD backends, TorchScript is about
2 to 3× slower compared to RAPIDS. TVM is instead the
faster solution on 14 experiments out of 18, with a 10% to
20% improvement wrt RAPIDS.

2The original FIL blog post [17] claims GPU acceleration to be in
the order of 28× for XGBoost, versus close to 300× in our case
(Airline). We think that the difference is in the hardware: in fact,
they use 5 E5-2698 CPUs for a total of 100 physical cores, while
we use a E5-2690 CPU with 6 (virtual) physical cores. Additionally,
they use a V100 GPU versus a P100 in our case.

The results are somehow surprising: HUMMINGBIRD targets the
high-level tensor APIs provided by PyTorch and TVM, and still it is
able to outperform custom C++ and CUDA implementations. These
results highlight the intuition that DNN frameworks can be used as
generic compilers for workloads beyond deep learning.
Request/Response. In this scenario, one single record is scored at
a time. For this experiment we run inference over the entire test
datasets, but with batch size equal to one. The results are depicted
in Table 9. 3 As we can see:

1. Differently than the batch scenario, ONNX-ML is much faster
compared to scikit-learn, in some cases even more than 100×.
That reason is that ONNX-ML is currently optimized for sin-
gle record, single core inference, whereas scikit-learn design
is more towards batch inference.

2. PyTorch and TorchScript, again, behave very similarly. For
random forest they are faster than scikit-learn but up to 5×
slower compared to ONNX-ML. For LightGBM and XG-
Boost they are sometimes on par with scikit-learn, sometime
slower. In the following experiments, we omit PyTorch as its
performance is similar to TrochScript.

3. TVM again provides the best performance in 11 cases out of
15, with a best case of 3× compared to the baselines.

These results are again surprising, considering that tensor operations
should be more optimized for bulk workloads rather than request/re-
sponse scenarios. In the next section we will see how performance
evolves as we change the batch size.
Scaling the Batch Size. We study how the performance of base-
lines and HUMMINGBIRD’s backends change with the batch size.
Figures 4a and 4b depicts the performance variation over CPU and
GPU, respectively. We report only a few combinations of dataset /
algorithm, but all the other combinations behave similarly. Starting
with the CPU experiment, we can see that ONNX-ML has the best
runtime for batch size of 1, but then its performance remains flat
as we increase the batch size. TorchScript and scikit-learn did not

3Note that we removed the Airline dataset since no system was able
to complete within the 1 hour timeout.
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Table 9: Request/Response experiments (1 record at-a-time on 1 CPU core). Numbers are in seconds.

Algorithm Dataset
Baselines Hummingbird

Sklearn ONNX-ML PyTorch TorchScript TVM

Rand. Forest

Fraud 1688.22 9.96 84.95 75.5 11.63
Epsilon 2945.42 32.58 153.32 134.17 20.4

Year 1152.56 18.99 84.82 74.21 9.13
Covtype 3388.50 35.49 179.4 157.8 34.1
Higgs timeout 335.23 timeout timeout 450.65

LightGBM

Fraud 354.27 12.05 96.5 84.56 10.19
Epsilon 40.7 29.28 167.43 148.87 17.3

Year 770.11 16.51 84.55 74.05 9.27
Covtype 135.39 209.16 854.07 822.93 42.86
Higgs timeout 374.64 timeout timeout 391.7

XGBoost

Fraud 79.99 7.78 96.84 84.61 10.21
Epsilon 121.21 27.51 169.03 148.76 17.4

Year 98.67 17.14 85.23 74.62 9.25
Covtype 135.3 197.09 883.64 818.39 43.65
Higgs timeout 585.89 timeout timeout 425.12

Table 10: Peak memory consumption for the
Fraud dataset. Batch size of 1000 records.

Algorithm Framework Memory

Random Forest

Sklearn 180MB
ONNX-ML 265MB
TorchScript 375MB

TVM 568MB

LightGBM

Sklearn 182MB
ONNX-ML 258MB
TorchScript 370MB

TVM 620MB

XGBoost

Sklearn 392MB
ONNX-ML 432MB
TorchScript 568MB

TVM 811MB
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Figure 4: Performance wrt scaling the batch size.

complete within the timeout for batch equal to 1, but, past 100, they
both scale linearly as we increase the batch size. TVM is compa-
rable to ONNX-ML for batch of 1; for batches of 100 records it
gets about 5× faster, while it scales like TorchScript for batches
greater than 100. This is likely due to the fact that TVM applies
a set of optimizations (such as operator fusion) that introduce a
constant-factor speedup compared to TorchScript.

Looking at the GPU numbers ( Figure 4b), TorchScript and TVM
again follow a similar trend, with TVM being around 3× faster than
TorchScript. Both TVM and TorchScript plateau at about a batch
size of 10K. RAPIDS FIL is slower than TorchScript for small batch
sizes, but it scales better than HUMMINGBIRD. This is because of
its custom CUDA implementation that is able to better use hardware
under higher utilization. Interestingly, FIL as well plateaus at around
100K records. The custom CUDA implementation introduces a
50% gain over HUMMINGBIRD with TVM runtime.
Scaling Hardware. We tested how RAPIDS FIL and HUMMING-
BIRD (TorchScript and TVM) scale as we change the GPU model.
For this experiment we tried both with a large batch size (1M
records, Figure 11a) to maximize hardware utilization, and a smaller
batch size (1K, Figure 11b). We ran this on all datasets across ran-
dom forest, LightGBM, XGBoost with similar results, and present

the Airline dataset (the largest) with LightGBM as a representative
sample. We tested on three NVIDIA devices: K80 is the oldest
(2014), P100 is the medium (2016), while V100 is the newer (2017).
From the figures, in general we can see that: (1) RAPIDS FIL does
not run on the K80 because it is an old generation; (2) with batch
of 1K we get slower total inference time because we don’t utilize
the full hardware; (3) TorchScript and TVM runtimes for HUM-
MINGBIRD scale similarly on different hardware, although TVM is
consistently 4 to 7× faster; (4) FIL scales similarly to HUMMING-
BIRD, although it is 50% faster on large batches, 3× slower for
smaller batches; (5) TorchScript is not optimal in memory manage-
ment because for batches of 1M it fails on the K80 with an OOM
exception. Finally, we also were able to run HUMMINGBIRD on
the new Graphcore IPU [14]. At the moment, we are only able to
run inference on a single decision tree (with numbers on par with
or faster than our decision tree experiments). We look forward to
expanding the experiment with tree ensembles.
Cost. Figure 5 shows the cost comparison between the Azure VM
instance equipped with GPU, and a comparable one without GPU
(E8 v3). The plot shows the cost of executing 100k samples with
batch size 1000 for random forest. The cost is calculated based
on the hourly rate of each VM divided by the amortized cost of
a single prediction. We executed scikit-learn on the CPU, and
TorchScript and TVM on the GPU for comparison. We found that
the CPU cost was significantly higher (between 10x-120x) across
all experiments. 4 An interesting result was that the oldest GPU was
the most cost effective, with the K80 and TVM having the lowest
cost for 13 out of the 18 experiments (including LightGBM and
XGBoost, not pictured). This result is explained by the fact that the
K80 is readily available at significantly lower cost.
Memory Consumption. We measured the peak memory consump-
tion over the Fraud dataset and for each algorithm. We used the
memory_usage function in the memory_profiler library [2].
The numbers are reported in Figure 10, and are related to the ex-
ecution over 1 core with a batch size of 1000 records. As we can
see, scikit-learn is always the most memory efficient. ONNX-ML
consumes from 10% to 50% more memory than scikit-learn, while
HUMMINGBIRD with TorchScript runtime consumes from 50% to
about 2× more memory than scikit-learn. Conversely, TVM con-

4Note: airline times out for random forest for CPU with 1k batch.
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Figure 6: Performance across GPUs for Airline, LightGBM

Table 12: Conversion times (sec) for models with parallelism of 1 core.

Algorithm Dataset ONNX-ML
Hummingbird

PyTorch TorchScript TVM

Rand. Forest

Fraud 1.28 0.55 0.58 102.37
Epsilon 7.53 2.63 2.67 108.64

Year 7.11 2.77 2.86 69.99
Covtype 9.87 2.16 2.2 106.8
Higgs 8.25 2.41 2.44 103.77
Airline 6.82 2.42 2.53 391.07

LightGBM

Fraud 1.34 0.98 1.06 3.42
Epsilon 11.71 7.55 7.60 9.95

Year 9.49 6.11 6.15 8.35
Covtype 32.46 22.57 23.12 26.36
Higgs 6.73 25.04 26.3 109
Airline 11.52 6.38 6.47 8.19

XGBoost

Fraud 0.55 0.65 0.7 86.59
Epsilon 6.86 25.89 25.94 113.4

Year 5.66 23.4 23.54 110.24
Covtype 9.87 2.16 2.20 106.8
Higgs 6.73 25.04 26.3 109
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Figure 5: Cost for random forest 100k samples, batch size of 1k.

sumes from 2× to 3× more memory wrt scikit-learn. Note that the
batch size influences the total memory consumption.
Output Validation. Since we run tree ensemble models as tensor
operations, we could introduce rounding errors over floating point
operations. Therefore, we need to validate that indeed the outputs
produced by the different systems match. To evaluate this, we used
the numpy testing.assert_allclose function, and we set
a relative error of 10−5, and an absolute error of 10−5. We validate
both the final scores and the probabilities (when available) for all
combinations of datasets and algorithms. Out of the 18 experiments
listed in Table 8, 9 of them returned no mismatches for HUMMING-
BIRD, 12 in the ONNX-ML case. Among the mismatches, the worst
case for HUMMINGBIRD is random forest with Covtype where we
have 0.8% of records differing from the original scikit-learn output
by more than the relative and absolute errors. For the Epsilon dataset,
HUMMINGBIRD with random forest returns a mismatch on 0.1%
of records. All the remaining mismatches effect less than 0.1% of
records. Note that the differences are small. The biggest mismatch
is of 0.086 (absolute difference) for Higgs using LightGBM. For the
same experiment ONNX-ML has an absolute difference of 0.115.
Conversion Time. Table 12 shows the time it takes to convert a
trained model into a target framework. The numbers are related
to the generation of model running on a single core. As we can
see, converting a model to ONNX-ML can take up to few tens
of seconds; HUMMINGBIRD with PyTorch backend is constantly
about 2× to 3× faster wrt ONNX-ML in converting random forests
models, while it varies for LightGBM and XGBModels. TorchScript

models are generated starting from PyTorch models, and in general
this further compilation step does not introduce any major overhead.
Finally, conversion to TVM is much slower compared to the other
approaches, and it might take more than 3 minutes. This is due to
code generation and optimizations introduced in TVM.

As a final note: parallel (i.e., more than 1 core) and GPU exe-
cution introduced further conversion time overheads, especially on
TVM. For instance, TVM can take up to 40 minutes to convert a
random forest model for execution on GPU.

5.1.2 Operators
Setup. This micro-benchmark is a replication of the suite comparing
scikit-learn and ONNX-ML operators [3]. We tested all scikit-learn
operators of the suite that are supported by both ONNX-ML and
HUMMINGBIRD (minus tree ensembles models, already discussed
in the previous section). The total number of operators we tested in
this micro-benchmark is 13, and are a mix of ML models (Logistic
Regression, Support Vector Machines, etc.) and featurizers (e.g.,
Binarizer, Polynomial, etc.). For this micro-benchmark we either
score 1 single record (request/response) or 1 million records.
Datasets. For this micro-benchmark we used the Iris datasets [21]
with 20 features. We generated the number of rows based on the
experiments: 1M for batch and just 1 for request / response.
List of Experiments. We carried the following set of experiments:
(1) request/response scenario with one single record (on CPU); (2)
batch inference over the 1M records, both on CPU and GPU; (3)
memory consumption and conversion time. We don’t report output
validation metrics as outputs of all transformed operators are correct.
Request / Response. Table 13 (left hand-side) contains the times
to score 1 record. The results are similar to the request/response
scenario for the tree ensemble micro-benchmark. Namely, ONNX-
ML outperform both scikit-learn and HUMMINGBIRD in 9 out of
13 cases. Note, however, that all frameworks are within a factor of
2. The only outlier is polynomial featurizer which is about 10×
faster on HUMMINGBIRD with TVM backend. This is because all
operators, except polynomial featurizer, are relatively compute light.
Batch Inference. The batch numbers are reported on the right hand-
side of Table 13. On CPU, scikit-learn is faster than ONNX-ML,
up to 6× for polynomial featurizer, although in most of the cases
the two systems are within a factor of 2. HUMMINGBIRD with
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Table 13: Experiments for operators on both CPU (single core) and GPU. Reported numbers are in milliseconds.

Operator

Request/Response (1 Record) Batch (1 Million Records)

Baselines (CPU) Hummingbird CPU Baselines (CPU) Hummingbird CPU Hummingbird GPU

Sklearn ONNX-ML TorchScript TVM Sklearn ONNX-ML TorchScript TVM TorchScript TVM

LogisticRegression 0.087 0.076 0.1 0.1 970 1540 260 47 13 15
SGDClassifier 0.098 0.1 0.12 0.1 180 1540 270 49 11 15

LinearSVC 0.077 0.05 0.11 0.1 110 69 260 51 12 18
NuSVC 0.086 0.072 4.1 0.14 3240 4410 2800 3000 140 72

SVC 0.086 0.074 2.3 0.12 1690 2670 1520 1560 120 41
BernoulliNB 0.26 0.1 0.07 0.11 280 1670 290 65 12 0.014

MLPClassifier 0.15 0.11 0.1 0.12 930 1860 910 1430 17 31
DecisionTreeClassifier 0.087 0.074 0.44 0.12 59 1610 560 35 13 16

Binarizer 0.064 0.053 0.063 0.1 98 75 39 59 38 38
MinMaxScaler 0.066 0.060 0.058 0.1 92 200 78 57 38 38

Normalizer 0.11 0.063 0.072 0.1 94 140 83 97 39 40
PolynomialFeatures 1.2 1 0.5 0.1 4030 29160 6380 3130 340 error

StandardScaler 0.069 0.048 0.059 0.1 150 200 77 58 38 38

TorchScript backend is competitive with scikit-learn, whereas with
TVM backend HUMMINGBIRD is faster on 8 out of 13 operators,
with in general a speedup of about 2× compared to scikit-learn.

If now we focus to the GPU numbers, we see that HUMMINGBIRD
with TorchScript backend compares favorably against TVM on 11
operators out of 13. This is in contrast with the tree ensemble micro-
benchmark where the TVM backend was faster than the TorchScript
one. We suspect that this is because TVM optimizations are less ef-
fective on these “simpler” operators. In this micro-benchmark, GPU
acceleration does not provide the speedup we instead saw for the
tree ensemble models. In general, we see around 2× performance
improvement over the CPU runtime: only polynomial featurizer run
much faster, with almost a 10× improvement. Again, this is because
the listed operators (with the exclusion of polynomial featurizer) are
compute light. Unfortunately, TVM returns a runtime error when
generating the polynomial featurizer model for GPU execution.
Memory Consumption and Conversion Time. We measured the
peak memory consumed and conversion time for each operator on
each framework. We used batch inference over 1000 records. For
memory consumption, the results are in line with what we already
saw in Section 5.1.1. ONNX-ML implementation introduces a 10%
to 20% memory overhead. HUMMINGBIRD with TorchSchript and
TVM backends are about to 2× to 3× more memory hungry than
scikit-learn, respectively. Regarding the conversion time, for ONNX-
ML and HUMMINGBIRD with TorchScript, the conversion time is
in the order of few milliseconds (30ms for TorchScript, 100ms for
ONNX-ML). The TVM backend is slightly slower but still in the
order of few tens of milliseconds (exception for NuSVC and SVC
which take up to 3.2 seconds). In comparison with the numbers
reported for the tree ensembles models (Table 12), we confirm that
these operators are simpler, even from a compilation perspective.

5.1.3 Tree Models Implementation
Next, we test the different tree-based models implementation to

make the case for the heuristics.
Datasets. For this micro-benchmark we employ a synthetic dataset
randomly generated with 5000 rows and 200 features.
Experiments Setup. We study the behavior of the tree implemen-
tations as we change the training algorithm, the batch size, and the
tree depth. For each experiment we set the number of trees to 100.
We will use the TVM runtime backend (similar results hold for the

other runtimes as well). Each experiment is run on 1 CPU core.
Results. Figure 7 shows the comparison between the different tree
implementations, and two baselines: the original scikit-learn model
and the related to-ONNX-ML-translated version. In the top part
of the figure we run all experiments using a batch size of 1; on
the bottom part of the figure we instead use a batch size of 1000.
In the column on the left-hand size, we generate trees with a max
depth of 3; 7 for the middle column, and 12 for column on the
right-hand side of the figure. In general, two things are apparent: (1)
our implementation is always as fast as or better than the baselines
(as we already saw in Section 5.1.1); and (2) no tree implementation
is always better than the others. Interestingly, the GEMM implemen-
tation outperforms the other two for small batch sizes, whereas
TreeTraversal and PerfectTreeTraversal are better over larger
batch sizes. Between TreeTraversal and PerfectTreeTraversal,
the latter is usually the best performant (although not by a large
margin). PerfectTreeTraversal however creates balanced trees, and
fails for very deep trees. The heuristics used in HUMMINGBIRD to
pick at compilation time the tree implementation are motivated by
this experiment. Similar conclusions hold also for GPU execution.

5.2 End-to-end Pipelines
Setup. In this experiment we test HUMMINGBIRD over end-to-end
real world pipelines. We downloaded the 72 tasks (and related
datasets) composing the OpenML-CC18 suite [23]. Among all the
tasks, we discarded all the “not pure scikit-learn” ML pipelines,
i.e., we discarded all the pipelines not exclusively composed by
scikit-learn operators (e.g., containing also arbitrary Python code).
We successively discarded all the pipelines returning a failure during
training. 88% of the remaining pipelines are exclusively composed
by operators supported by HUMMINGBIRD, for a total of 2328 ML
pipelines. Among this, 11 failed during inference due to runtime
errors in HUMMINGBIRD; we report the summary of executing
2317 pipelines. These pipelines contain an average of 3.3 operators,
which is in line with what we observed elsewhere [57].
Datasets. For this experiment we have 72 datasets in total [23].
The datasets are a curated mix specifically designed for ML bench-
marking. We did the typical 80%/20% split between training and
inference. The smaller dataset has just 100 records, the bigger
19264, while the median value is 462. The minimum number of
columns for a dataset is 4, the maximum 3072, with a median of 30.
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Figure 7: Comparison between the different tree implementations as we vary the batch size and tree depth.
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Figure 8: Speedup/slowdown of pipelines when
using HUMMINGBIRD wrt baseline Sklearn.

List of Experiments. We run all pipelines and report the speedup /
slowdown introduced by HUMMINGBIRD with TorchScript backend
wrt baseline scikit-learn on both CPU and GPU. We do not report any
conversion time / memory consumption / output validation results
since these are the aggregation of the numbers reported previously.
Results. Figure 8 summarizes the speedup / slowdown introduced
by HUMMINGBIRD when scoring all 2317 pipelines. As we can see,
HUMMINGBIRD is able to accelerate about 60% of the pipelines on
CPU (8a). In general, the slowest pipeline gets about 60× slower
wrt scikit-learn, the fastest instead gets a 1200× speed up. The
slowdowns are due to a couple of factors: (a) the datasets used for
these experiments are quite small; (b) some pipelines contain largely
sparse operations (i.e., SVM on sparse inputs); (c) several pipelines
are small and do not require much computation (e.g., a simple in-
puter followed by a small decision tree). These three factors are
highlighted also by the fact that even if we move computation to the
GPU (8b), still 27% of the pipelines have some slowdown. Note
however that (1) both sparse and small pipelines can be detected at
compile time, and therefore we can return a warning or an error;
(2) DNN frameworks are continuously adding new sparse tensor
operations (e.g., [26]); and (3) an option could be to add a specific
runtime backend for sparse tensor operations (e.g., we have a pro-
totype integration with TACO [43]). In general, DNN frameworks
are relatively young, and HUMMINGBIRD will exploit any future
improvement with no additional costs.

With GPU acceleration (Figure 8b), 73% of the pipelines show
some speedup. The slowest pipeline gets about 130× slower wrt
scikit-learn, the fastest instead gets a speedup of 3 orders of magni-
tude. Some of the pipelines get worse from CPU to GPU execution.
This is due to (1) sparsity; (2) small compute; and (3) data move-
ments between CPU and GPU memory. Indeed we run all pipelines
on GPU, even the ones for which in practice would not make much
sense (e.g., a decision tree with 3 nodes). We leave as future work an
extension to our heuristics for picking the right hardware backend.

6. RELATED WORK
PyTorch [54], TensorFlow [12], MXNet [11], CNTK [9] are DNN

frameworks that provide easy-to-use (tensor-based) APIs for author-
ing DNN models, and heterogeneous hardware support for both
training and inference. Since the performance of these systems is
comparable [63], we picked PyTorch as the default runtime backend
for HUMMINGBIRD. Beyond these popular frameworks, inference
runtimes such as ONNX [4], nGraph [15], TVM [31], and Ten-
sorRT [18] provide optimizations and efficient execution targets,
specifically for inference. To prove the versatility of our approach,

we have tested HUMMINGBIRD with both PyTorch and TVM. HUM-
MINGBIRD uses a two-level, logical-physical optimization approach
similar to relational databases. First, we apply logical optimizations
based on the operators composing the pipeline. Afterwards, physi-
cal operator implementations are selected based on model statistics,
and physical rewrites, which are externally implemented by the
DNN runtime, are executed (e.g., algebraic rewrites, operator fu-
sion). Willump [44] uses a similar two-level optimization strategy,
although it targets Weld [53] as its low level runtime and there-
fore it cannot natively support inference on hardware accelerators.
Conversely, HUMMINGBIRD casts ML pipelines into tensor com-
putations. Hence, it takes advantage of DNN serving systems and
eases the deployment on many target environments. Other optimiz-
ers for inference pipelines, such as Pretzel [47], only target higher
level (logical) optimizations. While HUMMINGBIRD is currently
built on top of skl2onnx, another option could be MLIR [46].

Several works deal with executing tree (ensemble) [24, 52, 59]
and graphical models [49, 50] on hardware accelerators. These
systems however provide custom implementations specific to a tar-
get hardware (e.g., NVIDIA GPUs for RAPIDS FIL [24], FPGAs
for [52]). HUMMINGBIRD takes advantage of existing NNs solu-
tions to improve efficiency of traditional ML prediction on various
hardware and platforms, hence minimizing engineering efforts. Fi-
nally, while this work only covers inference, similar techniques can
be used for training as well [64]. HUMMINGBIRD can be used alone,
but also integrated with other optimizers, e.g., Raven [41].

7. CONCLUSIONS
In this paper, we explore the idea of using frameworks such as

PyTorch and TensorFlow, not as plain DNN systems but as generic
compilers and optimizers for heterogeneous hardware. Our use-case
is “traditional” ML inference. We ported 40+ data featurizers and
traditional ML models into tensor operations, and tested their per-
formance over two DNN frameworks (PyTorch and TVM) and over
different hardware (CPUs and GPUs). The results are surprising:
even though HUMMINGBIRD targets high-level tensor operations,
it is able to outperform custom C++ and CUDA implementations.
To our knowledge, HUMMINGBIRD is the first system able to run
classical ML inference on heterogeneous hardware, while proving
that DNN frameworks are mature enough to be used as generic
compilers for heterogeneous hardware.

We think HUMMINGBIRD opens many possibilities that we didn’t
explore in this work. For instance, approximate evaluation of
pipelines using quantization, a feature now available in many DNN
frameworks. Another open question is whether this same approach
can also be used to run relational operators over accelerators.
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APPENDIX
A. RUNTIME INDEPENDENT OPTIMIZA-

TIONS
We discuss four novel optimizations, which are unique to tradi-

tional ML scoring. To the best of our knowledge, this is the first
time that they are being applied in ML scoring and can be even
implemented in traditional ML tools. However, our approach of
separating out the prediction pipeline from training pipeline and
compiling it into tensor computations makes it easy to implement
these optimizations in HUMMINGBIRD.

A.1 Optimizations
Feature Selection Push-Down. Feature selection is a popular op-
eration that is often used as the final featurization step as it reduces
over-fitting and improves the accuracy of the ML model [34]. How-
ever, during scoring, it can be pushed down in the pipeline to avoid
redundant computations such as scaling and one-hot encoding for
discarded features or even reading the feature at all. This idea is
similar to the concept of projection push-down in relation query
processing but through user-defined table functions, which in our
case are the ML operators. For operators such as feature scaling,
which performs 1-to-1 feature transformations, selection push-down
can be easily done. However, for operators such as one-hot encod-
ing and polynomial featurization, which perform 1-to-m or m-to-1
feature transformations, the operator will have to absorb the feature
selection and stop generating those features. For example, say one-
hot encoding is applied on a categorical feature column which has a
vocabulary size of 10, but 4 of those features are discarded by the
feature selector. In such cases, we can remove such features from
the vocabulary. After such absorbing, it is possible that some of the
input features can still be discarded as they are not used at all, which
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Figure 9: Feature selection push down + algebraic rewrite
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Figure 10: Feature selection injection + selection push down + algebraic rewrite.

allows us to push the feature selection even further. Note that for
some “blocking” operators [47], such as feature normalizers, it is
not possible to push-down the feature selection.
Feature Selection Injection. Even if the original pipeline doesn’t
have a feature selection operator, it is possible to inject one and
then push it down to avoid redundant computations. Linear models
with L1 regularization (Lasso) is a typical example where feature
selection is implicitly performed. The same idea can be extended to
tree-based models to prune the features that are not used as decision
variables. In both of these examples, the ML model also has to be
updated to take into account the pruned features. For linear models
we prune the zero weights; for tree models, we update the indices of
the decision variables.
Algebraic Rewrites. We found opportunities to rewrite several
operators that perform linear algebra operations into a single GEMM
operation. Consider a pipeline that trains a logistic regression model
and has feature scaling and matrix decomposition (e.g., PCA) as the
featurization steps. It is algebraically represented in Eq. 1-LHS.

sigmoid

(((X − α
β

)
·WPCA

)
·WLR +BLR

)
= sigmoid(X ·W +B) (1)

Notice that parentheses in Eq. 1-LHS capture the order in which
the operators were trained and it requires performing 5 tensor op-
erations: 2 element-wise ops for scaling; two GEMM ops for matrix
decomposition and logistic regression; and a final sigmoid op for
logistic regression. It is possible to use linear algebra properties and
represent the same pipeline using two ops as shown in RHS, where
tensor W and B can be pre-computed and used during scoring.
These kinds of patterns are in fact very common in classical ML;

any subset of scaling, matrix decomposition, and linear models con-
stitutes such patterns. However, they do not appear in DNNs due to
the use of non-linear transformations and hence most tensor runtime
optimizers are oblivious of these opportunities. HUMMINGBIRD’s
optimizer has a roster of such patterns and checks for potential
rewrites during optimization.
Batching Stacked Models. Recall that in Section 4.1, we batched
the tensors from all trees into single tensors and performed batched
tensor operations. Alternatively, we could have stored them sepa-
rately and invoke tensor operations on each tree. Though this would
yield the same result it will be highly inefficient due to two rea-
sons: (1) high operator invocation overhead and (2) high memory
access overhead (due to multiple reading of the input tensor X). It
is possible to apply the same batching optimization across multiple
ML operators. Consider a stacked ML model that is composed of
logistic regression, linear SVM, and Bernoulli Naive Bayes models.
While these models are conceptually different during scoring all
three of them are essentially performing a GEMM operation. Thus,
it is possible to batch them together into one GEMM operation to
reduce overheads. Efficiently finding this type of graph substitutions
in an arbitrary tensor computation DAG is still an active area of
research [39]; hence not supported by many DNN runtimes. On
the other hand, HUMMINGBIRD implements few patterns as the one
above, directly over traditional ML operators and triggers batching
rewrites.

A.2 Experimental Evaluation
We ran an experiment to measure the benefits of the feature se-

lection push down. In Figure 9 we compare HUMMINGBIRD (on
TorchScript runtime) with and without feature selection push-down,
and the baseline implementation of the pipelines in scikit-learn. For
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this we use the OpenML Nomao dataset and use a pipeline which
trains a logistic regression model with L2 loss. The featurization
part contains one-hot encoding for categorical features, missing
value imputation for numerical values, followed by feature scaling,
and a final feature selection operator (scikit-learn SelectKBest). We
vary the percentile of features that are picked by the feature selection
operator. HUMMINGBIRD pushes down the feature selection and
also rewrites feature scaling and logistic regression into one GEMM
operation. Note that this rewrite is only possible as a result of feature
selection push down. In general, we can see that HUMMINGBIRD
without the above optimization is about 2× faster than scikit-learn
in evaluating the pipelines. For small percentiles, the optimizations
deliver a further 3×. As we increase the percentile of features that
are selected (excluding percentile= 1.0, which is no feature selec-

tion) the runtime of HUMMINGBIRD both w/ and w/o optimizations
increase, although with the optimization HUMMINGBIRD is still 2×
faster than without.

We also ran an experiment to evaluate whether we can improve
the performance of pipelines with sparse models by injecting (and
then pushing down) feature selection operators. The pipeline is same
as in the previous case but without the feature selection operator.
Instead we train the logistic regression model with L1 regularization.
In Figure 10 we vary the L1 regularization coefficient and study
how much performance we can gain. We see with very sparse
models we can see up to 3× improvement wrt HUMMINGBIRD
w/o optimization. Performance gains dissipate as we decrease the
sparsity of the model.
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