
Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics

ABSTRACT

Deep convolutional neural networks (CNNs) achieve near-
human accuracy on many image understanding tasks. Thus
they are now increasingly used to integrate images with
structured data for multimodal analytics applications. Since
training deep CNNs from scratch is expensive, transfer learn-
ing has become popular: using a pre-trained CNN, one “reads
off” a certain layer of CNN features to represent images and
combines them with other features for a downstream ML
task. Since no single layer will always offer best accuracy in
general, such feature transfer requires comparing many lay-
ers. The current dominant approach to this process on top of
scalable analytics systems such as Spark using deep learning
toolkits such as TensorFlow is fraught with inefficiency due
to redundant CNN inference and the potential for system
crashes due to mismanaged memory. We present Vista, the
first data system to mitigate such issues by elevating the fea-
ture transfer workload to a declarative level and formalizing
the data model of CNN inference. Vista enables automated
optimization of feature materialization trade-offs, distributed
memory management, and system configuration. Real-world
experiments show that apart from enabling seamless feature
transfer, Vista substantially improves system reliability and
reduces runtimes by up to 90%.

ACM Reference Format:

. 2018. Materialization Trade-offs for Feature Transfer from Deep
CNNs for Multimodal Data Analytics. In Proceedings of ACM Con-

ference (Conference’17). ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Deep convolutional neural networks (CNNs) have revolu-
tionized computer vision, yielding near-human accuracy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Convolutional+Pooling+ReLU Layers Fully Connected Layers Output

Low-level Features Mid-level Features High-level Features

Input

Image features from a specified layer

Structured Features Multimodal Feature Set
Concatenate

(A) CNN Inference

Brand Tags Price Brand Tags Price Image Features

Downstream ML Model(B) CNN Feature Transfer for Multimodal Analytics

Figure 1: (A) Simplified illustration of a typical deep CNN and its

hierarchy of learned features (based on [68]). (B) Illustration ofCNN

feature transfer for multimodal analytics.

for many image understanding tasks [51]. The key techni-
cal reason for their success is how they extract a hierarchy
of parametrized features from images, with the parameters
learned automatically during training [34]. Each layer of fea-
tures captures a different level of abstraction about the image,
e.g., low-level edges and patterns in the lowest layers to ab-
stract object shapes in the highest layers. This remarkable
ability of deep CNNs is illustrated in Figure 1(A).
The success of deep CNNs presents an exciting oppor-

tunity to holistically integrate image data into traditional
data analytics applications in the enterprise, healthcare, Web,
and other domains that have hitherto relied mainly on struc-
tured data features but had auxiliary images that were not
exploited. For instance, product recommendation systems
are powered by ML algorithms that relied mainly on struc-
tured data features such as price, vendor, purchase history,
etc. Such applications are increasingly using CNNs to exploit
product images by extracting visually-relevant features to
help improve ML accuracy, especially for products such as
clothing and footwear [53]. Indeed, such CNN-based fea-
ture extraction already powers visual search and analytics
at some Web companies [40]. Numerous other applications
could also benefit from such multimodal analytics, including
inventory management, healthcare, and online advertising.
Since training deep CNNs from scratch is expensive in

terms of resource costs (e.g., one might need many GPUs [3])

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

and the number of labeled examples needed, an increas-
ingly popular paradigm for handling images is transfer learn-
ing [56]. Essentially, one uses a pre-trained deep CNN, e.g.,
ImageNet-trained AlexNet [31, 45] and “reads off” a certain
layer of the features it produces on an image as the image’s
representation [17, 32]. Any downstream ML model can use
these image features along with the structured features, say,
the popular logistic regression model or even shallow neural
networks. Figure 1(B) illustrates this process. Thus, such fea-

ture transfer helps reduce costs dramatically for using deep
CNNs. Indeed, this paradigm is responsible for many high-
profile successes of CNNs, including detecting cancer [33]
and diabetic retinopathy [62], facial analyses [19], and prod-
uct recommendations and search [40, 53].

Alas, feature transfer creates a new practical bottleneck for
data scientists: it is impossible to say in general which layer
of a CNN will yield the best accuracy for the downstream
ML task [23]. The rule of thumb is to extract and compare
multiple layers [23, 65]. This is a model selection process
that combines CNN features with structured data [47]. It
requires training the downstream ML model for each CNN
layer of interest. Surprisingly, the current dominant approach
to this process is to manually materialize each CNN layer
from scratch as flat files using tools such as TensorFlow [21]
and loading such data into a scalable analytics system for
the downstream ML task, say, with Spark and MLlib [54],
which is increasingly popular among enterprises [4, 8]. Such
manual management of files of features and system memory
could frustrate users and reduce productivity. Furthermore,
as we will show, this approach also ignored opportunities to
avoid redundant computations, which wastes runtimes and
raises costs, especially in the cloud.
In this paper, we resolve the above issues for scalable fea-

ture transfer from deep CNNs for multimodal analytics. We
start with a simple but crucial observation: the various layers
of a typical CNN are not independent–extracting a higher

layer requires a superset of the computations needed for a

lower layer. This observation leads us to a classical data-
base systems-style concern: view materialization trade-offs.
In database parlance, the current approach of materializing
all layers of interest from scratch on demand is a form of lazy
materialization, where a “view” is a layer of CNN features.
This approach wastes runtime due to redundancy in CNN
inference computations across layers of interest.
One might then ask: Why not materialize and cache all

layers of interest in one go? This is a form of eager materializa-

tion. While it reduces runtimes, this alternative approach in-
creases memory pressure, since CNN features are often much
larger than the input. For example, one of ResNet50’s layers
is 784kB, while the input image is 14kB [35]; so, 10GB of
images will blow up to 560GB of features! Such data blowups
lead to non-trivial systems trade-offs for balancing runtimes

and memory/storage space. Performed naively, eager mate-
rialization can cause system crashes, which could frustrate
users and raise costs again by requiring them to manually
tweak the system or use needlesslymore expensivemachines.
Caching more layers than needed can also cause disk spills,
raising runtimes further. Thus, overall, scalable feature trans-
fer is technically challenging due to two simultaneous sys-
tems concerns: efficiency (reducing runtimes) and reliability

(avoiding system crashes).
Resolving the above dichotomy between lazy and eager

materialization requires navigating complex materialization
trade-offs involving feature storage, memory usage, and run-
times. Since such trade-offs are likely too low-level for most
ML-oriented data scientists, we present a novel “declarative”
data system to handle such trade-offs and let data scientists
focus on what layers they want to explore rather than how to
run this workload. We formalize the dataflow of CNN infer-
ence operations and perform a comprehensive analysis of the
abstract memory usage behavior of this workload, inspired
by work on optimizing memory usage in RDBMSs [28].

Using our analysis, we delineate three general dimensions

of systems trade-offs for this workload. First, we compare
new logical execution plan choices to avoid redundant CNN
inference and ease memory pressure. In particular, we intro-
duce a novel CNN-aware execution plan in between lazy and
eager that is inspired by multi-query optimization from the
relational query optimization literature [59]. Second, we an-
alyze the trade-offs of key system configuration parameters,
in particular, memory apportioning, multi-core parallelism,
and data partitioning. Third, we analyze the trade-offs of
two physical execution plan choices, viz., join operator selec-
tion and data serialization. Finally, we put together all our
analyses to design an automated optimizer that navigates all
trade-offs and picks an end-to-end system configuration and
execution plan to improve both reliability and efficiency.

We prototype our ideas as a system we call Vista on top of
Spark [67] and Ignite [24], two popular distributed memory-
oriented data systems. This lets us piggyback on them for
orthogonal benefits such as scalability and fault tolerance.
We use TensorFlow for efficient CNN inference. Vista offers
a high-level API for users to specify the feature transfer
workload and issues queries to the underlying data system
based on the input parameters and its optimizer’s decisions.
While we focus on Spark, Ignite, and TensorFlow due to
their popularity, our ideas are generic and orthogonal to
the specific systems used. One could replace Spark with
Hadoop or TensorFlow with PyTorch, but still benefit from
our analysis and optimization of the materialization trade-
offs.

Overall, this paper makes the following contributions:
• To the best of our knowledge, this is the first paper to
study the materialization trade-offs of scalable CNN

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

feature transfer for multimodal analytics over image
and structured data from a systems standpoint.
• We analyze the abstract memory usage behavior of
this workload, delineate three dimensions of trade-
offs (logical execution plan, system configuration, and
physical execution plan), and present a new multi-
query optimized CNN-aware execution plan.
• We devise an automated optimizer to handle all sys-
tems trade-offs and build a prototype system Vista on
top of popular scalable data systems and deep learning
tools to let data scientists focus on theirML exploration
instead of being bogged down by systems issues.
• We present an extensive empirical evaluation of the
reliability and efficiency of Vista using real-world
datasets and deep CNNs and also analyze how it nav-
igates the trade-off space. Overall, Vista detects and
avoids many crash scenarios and reduces runtimes by
up to 90%.

Outline. The rest of this paper is organized as follows. Sec-
tion 2 presents the technical background. Section 3 intro-
duces our data model, formalizes the feature transfer work-
load, explains our assumptions, and provides an overview of
Vista. Section 4 dives into the trade-offs of this workload and
presents our optimizer. Section 5 presents the experimental
evaluation. We discuss other related work in Section 6 and
conclude in Section 7.

2 BACKGROUND

We provide some relevant technical background from both
the machine learning/vision and data systems literatures.

Deep CNNs. CNNs are a type of neural networks special-
ized for image data [34, 51]. They exploit spatial locality
of information in image pixels to construct a hierarchy of
parametric feature extractors and transformers organized
as layers of various types: convolutions, which use image fil-
ters from graphics, except with variable filter weights, to ex-
tract features; pooling, which subsamples features in a spatial
locality-aware way; non-linearity to apply a non-linear func-
tion (e.g., ReLU) to all features; and fully connected, which is a
collection of perceptrons. A “deep” CNN just stacks such lay-
ers many times over. All parameters are trained end-to-end
using backpropagation [50]. This learning-based approach
to feature engineering enables CNNs to automatically con-
struct a hierarchy of relevant image features (see Figure 1)
and surpass the accuracy of prior art that relied on fixed
hand-crafted features such as SIFT and HOG [29, 52]. Our
work is orthogonal to how CNNs are designed, but we note
that training them from scratch incurs massive costs: they
often need many GPUs for reasonable training times [3], as

well as huge labeled datasets and hyper-parameter tuning to
avoid overfitting [34].

Transfer Learning with CNNs. Transfer learning is a pop-
ular paradigm to mitigate the cost and data issues with train-
ing deep CNNs from scratch [56]. One uses a pre-trained
CNN, say, ImageNet-trained AlexNet obtained from a “model
zoo” [5, 10], removes its last few layers, and uses it as an im-
age feature extractor. This “transfers” knowledge learned by
AlexNet to the target prediction task. If the same CNN archi-
tecture is used and the last few layers are retrained, it is called
“fine tuning,” but one can also use a more interpretable model
such as logistic regression for the target ML task. Such trans-
fer learning underpins recent breakthroughs in detecting
cancer [33], diabetic retinopathy [62], face recognition-based
analyses [19], and multimodal recommendation algorithms
combining images and structured data [53]. However, no
single layer is universally best for accuracy; the guideline is
that the “more similar” the target task is to ImageNet, the
better the higher layers will likely be [17, 23, 32, 65]. Also,
lower layer features are often much larger; so, simple fea-
ture selection such as extra pooling is typically helpful [23].
Overall, data scientists have to explore at least a few layers
for best results [23, 65].

Spark, Ignite, and TensorFlow. Spark and Ignite are pop-
ular distributed memory-oriented data systems [2, 24, 67].
At their core, both have a distributed collection of key-value
pairs as the data abstraction. They support numerous dataflow
operations, including relational operations and MapReduce.
In Spark, this distributed collection (called a Resilient Dis-
tributed Dataset or RDD) is immutable, while in Ignite, it is
mutable. Spark holds the data in memory and support disk
spills. It uses HDFS for persistent storage. Ignite has its own
native storage layer and uses the memory to operate as a
cache for the data in its persistent storage. Both systems have
extension capabilities in the form of user-defined functions
(UDFs) that let users run ML algorithms directly on large
datasets that reside in such systems. MLlib is a library of pop-
ular ML algorithms implemented over Spark; it is popular
for scalable ML over structured data [4, 9].
TensorFlow (TF) is a tool for expressing ML algorithms,

especially complex neural network architectures (including
deep CNNs) [20, 21]. Models in TF are specified as a “com-
putational graph,” with nodes representing operations over
“tensors” (multi-dimensional arrays) and edges representing
dataflow. To execute a graph, one selects a node to “run”
after specifying all its input data. TensorFrames and SparkDL

are APIs that integrate Spark and TF [15, 16]. They enable
the use of TF within Spark by invoking TF sessions from
Spark workers. TensorFrames lets users process Spark data
tables using TF code, while SparkDL offers pipelines to in-
tegrate neural networks into Spark queries and distribute

Conference’17, July 2017, Washington, DC, USA

hyper-parameter tuning. SparkDL is the most closely related
work to Vista, since it too supports transfer learning. But
unlike our work, SparkDL does not allow users to explore
different CNN layers nor does it optimize query execution
to improve reliability or efficiency. Thus, our work could
augment SparkDL.

3 PRELIMINARIES AND OVERVIEW

We present an example and some definitions for formalizing
our data model. We then state the problem studied, explain
our assumptions, and give an overview of Vista.

Example Use Case (Based on [53]). Consider a data sci-
entist at an online fashion retailer working on a product
recommendation system (see Figure 1). She uses logistic re-
gression to classify products as relevant or not for a user
based on structured features such as price, brand, category,
etc., and user behavior. There are also product images, which
she thinks could help improve accuracy. Since building deep
CNNs from scratch is too expensive for her, she uses the pre-
trained deep CNN AlexNet [45] and uses the penultimate
feature layer as the image representation. She also tries a few
other layers and compares their accuracy. While this exam-
ple is simplified, such use cases are growing across applica-
tion domains, including online advertising (with ad images),
nutrition and inventory management (with food/product
images) [11], and healthcare (with tissue images) [33].
Comparing multiple CNN layers is crucial for effective

transfer learning [17, 23, 32, 65]. As a sanity check exper-
iment, we took the public Foods dataset [11] and built a
classifier predict of a particular food item is a plant-based
food or beverage or not. Using structured features alone (e.g.,
sugar and fat content), a well-tuned logistic regression model
yields a test accuracy of 85.2%. Including image features from
fc6 layer of ResNet raises it to 88.3% (Appendix D).

3.1 Definitions and Data Model

We now introduce some definitions and notation to help us
formalize the data model of partial CNN inference. These
terms and notation will be used in the rest of this paper.
Definition 3.1. A tensor is a multidimensional array of

numbers. The shape of ad-dimensional tensor t ∈ Rn1×n2×...nd

is the d-tuple (n1, . . .nd).

A raw image is the (compressed) file representation of
an image, e.g., JPEG. An image tensor is the numerical ten-
sor representation of the image. Grayscale images have 2-
dimensional tensors; colored ones, 3-dimensional (with RGB
pixel values). We now define some abstract datatypes and
functions that will be used to explain our techniques.
Definition 3.2. A TensorList is an indexed list of tensors

of potentially different shapes.

Definition 3.3. A TensorOp is a function f that takes as

input a tensor t of a fixed shape and outputs a tensor t ′ = f (t)
of potentially different, but also fixed, shape. A tensor t is said
to be shape-compatible with f iff its shape conforms to what

f expects for its input.

Definition 3.4. A FlattenOp is a TensorOp whose output

is a vector; given a tensor t ∈ Rn1×n2×...nd , the output vector’s

length is

∏d
i=1 ni .

The order of the flattening is immaterial for our pur-
poses. We are now ready to formalize the CNN model object,
whose parameters (weights, activation functions, etc.) are
pre-trained and fixed, as well as CNN inference operations.

Definition 3.5. A CNN is a TensorOp f that is represented

as a composition of nl indexed TensorOps, denoted f (·) ≡
fnl (. . . f2 (f1 (·)) . . .), wherein each TensorOp fi is called a

layer and nl is the number of layers.1 We use f̂i to denote

fi (. . . f2 (f1 (·)) . . .).

Definition 3.6. CNN inference. Given a CNN f and a

shape-compatible image tensor t , CNN inference is the process
of computing f (t).

Definition 3.7. Partial CNN inference. Given a CNN f ,
layer indices i and j > i , and a tensor t that is shape-compatible

with layer fi , partial CNN inference i → j is the process of

computing fj (. . . fi (t) . . .), denoted f̂i→j .

Definition 3.8. Feature layer. Given a CNN f , layer index
i , and an image tensor t that is shape-compatible with layer

fi , feature layer li is the tensor f̂i (t).

Allmajor CNN layers–convolutional, pooling, non-linearity,
and fully connected–are just TensorOps. The above defi-
nitions capture a crucial aspect of partial CNN inference–
data flowing through the layers produces a sequence of ten-
sors. Our formalization helps us exploit this observation in
Vista to automatically optimize the execution of feature
transfer workloads, which we define next.

3.2 Problem Statement and Assumptions

We are given two tables Tstr (ID,X) and Timg (ID, I), where
ID is the primary key (identifier), X ∈ Rds is the structured
feature vector (with ds features, including label), and I are
raw images (say, as files on HDFS). We are also given a CNN
f with nl layers, a set of layer indices L ⊂ [nl] specific to
f that are of interest for transfer learning, a downstream
ML algorithm M (e.g., logistic regression), a set of system
resources R (number of cores, system memory, and number
of nodes). The feature transfer workload is to train M for
1For exposition, we focus on sequential (chain) CNNs, but it is straightfor-
ward to extend our definitions to DAG-structured CNNs such as DenseNet
as well [39].

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

each of the |L| feature vectors obtained by concatenating X
with the respective feature layers obtained by partial CNN
inference. More precisely, we can state the the workload
using the following set of logical queries:

∀ l ∈ L : (1)

T ′
img,l (ID,дl (f̂l (I))) ← Apply дl ◦ f̂l to Timg (2)

T ′l (ID,X
′
l) ← Tstr ▷◁ T

′
img,l (3)

TrainM on T ′l with X ′l ≡ [X ,дl (f̂l (I))] (4)

Step (2) performs partial CNN inference to materialize
feature layer l and flattens it with дl , a shape-compatible
FlattenOp. Step (3) concatenates structured and image fea-
tures using a key-key join. Step (4) trains M on the new
multimodal feature vector. Pooling can be injected before дl
to reduce dimensionality forM [23]. The current dominant
practice is to run the above queries as such, i.e., materialize
feature layers manually and independently as flat files and
transfer them; we call this approach lazy materialization.
Apart from being cumbersome, such an approach is ineffi-
cient due to redundant partial CNN inference and/or runs
the risk of system crashes due to poor memory management.
Our goal is to resolve these issues. Our approach is to elevate

this workload to a declarative level, obviate manual feature

transfer, automatically reuse partial CNN inference results,

and optimize the system configuration and execution for better

reliability and efficiency.

We make few simplifying assumptions in this paper for
tractability. First, we assume that f is from a roster of well-
known CNNs (currently, AlexNet, VGG, and ResNet). This
is a reasonable start, since most recent feature transfer ap-
plications used only such well-known CNNs from model
zoos [5, 10]. We leave support for arbitrary CNNs to future
work. Second, we support only one image per data example.
We leave handling multiple images per example to future
work. Third, we focus on using logistic regression for M .
This choice is orthogonal to this paper’s focus, but it lets us
study CNN feature materialization trade-offs in depth. We
leave support for more ML models for M (e.g., multi-layer
perceptrons) to future work. Finally, we assume secondary
storage is plentiful and focus on distributed memory-related
issues, since storage is usually much cheaper.

3.3 System Architecture and API

We prototype Vista as a library on top of two environments;
Spark-TensorFlow [6, 16] and Ignite-TensorFlow [24]. Due
to space constraints we explain only the Spark-based proto-
type architecture; the prototype on Ignite is similar. Figure 2
illustrates our system architecture. It has three main compo-
nents: (1) a “declarative” API, (2) a roster of popular named

Vista Vista API

Vista Optimizer Pre-Trained CNNs

Spark
DataFrames TensorFrames

HDFS

MLlib

Tstr

TensorFlow

Interactions

Results,
Trained Models

Data, Model
Configs

 Timg

Invokes

Flow of Data/Results

Figure 2: System architecture of the Vista prototype on top of the

Spark-TensorFlow combine. The prototype on Ignite-TenforFlow is

similar and skipped for brevity.

Figure 3: Vista API and sample usage showing values for the input

parameters and invocation.

deep CNNs with named feature layers (we currently support
AlexNet [45], VGG16 [60], and ResNet50 [35]), and (3) the
Vista optimizer. The declarative front-end API (see Figure 3)
is implemented in Python; a user should specify several in-
puts, with three major groups of inputs. First are the system
environment (memory, nodes and number of cores). Second
are the deep CNN f and the number of feature layers |L|
(starting from the top most layer) to explore for transfer
learning. Third is the downstream ML routineM , provided
as a function pointer (we assume this routine handles the
downstream model’s artifacts). Fourth are the data tables
Tstr and Timg and statistics about the data. The result is a
dictionary with the |L| training errors.

Under the covers, Vista invokes its optimizer (Section 4.3)
to obtain a reliable and efficient combination of decisions
for the logical execution plan (Section 4.2.1), key system
configuration parameters (Section 4.2.2), and physical exe-
cution (Section 4.2.3). After configuring Spark accordingly,
Vista runs within the Spark Driver process to orchestrate
the feature transfer task by invoking Spark’s DataFrame,
TensorFrames [16], and MLlib APIs. Vista has user-defined

Conference’17, July 2017, Washington, DC, USA

functions for (partial) CNN inference, i.e., f , f̂l , дl , and f̂i→j
for the CNNs in its roster. These functions pre-specify the TF
computational graphs to use. During query execution, Vista
invokes the DataFrame and TensorFrames APIs with the ap-
propriate user-defined functions injected based on the user
inputs and optimizer decisions. Image and feature tensors are
handled using our custom TensorList datatype. Overall, the
user does not need to write any TF code. Finally, Vista uses
MLlib to invoke the downstream ML algorithm on the joined
multimodal feature vector and saves |L| trained downstream
models. Overall, Vista frees users from having to manually

handle TF code, save features as files, perform joins of RDDs,

or tune Spark for such scalable feature transfer workloads.

4 TRADE-OFFS AND OPTIMIZER

We analyze the abstract memory usage behavior of our work-
load and explain how it maps to Spark and Ignite memory
models. We then use the analysis to explain the trade-off
space for improving reliability and efficiency. Finally, we
apply our analyses to design the Vista optimizer.

4.1 Memory Use Analysis of Workload

It is important to understand and optimize the memory use
behavior of our workload, since mismanaged memory can
cause frustrating system crashes and/or excessive disk spill-
s/cache misses that raise runtimes in the distributed memory-
based environment. Apportioning and managing distributed
memory carefully is a central concern for modern distributed
data processing systems. Since ourwork is not tied to any spe-
cific data system, we create an abstract model of distributed

memory apportioning to help us explain the trade-offs in a
generic manner. These trade-offs involve apportioning mem-
ory between intermediate data, CNN models, and working
memory for UDFs, and they affect both reliability (avoiding
crashes) and efficiency. We then highlight interesting new
twists in our workload that can cause such crashes or inef-
ficiency, if not handled carefully. Finally, for concreteness
sake, we map our abstract memory model to two popular
state-of-the-art distributed data processing systems, Spark
and Ignite.

Abstract Memory Model. In distributed memory-based
data processing systems, a worker’s System Memory is split
into two main regions: Reserved Memory for OS and other
processes and Workload Memory, which in turn is split into
Execution Memory and Storage Memory. This is illustrated
by Figure 4(A). For typical relational workloads, Execution
Memory is further split into User Memory, which is used for
UDF execution, and Core Memory, which is used for query
processing. Common best practice guidelines recommend
allocating most of SystemMemory to StorageMemory, while
ensuring there is enough memory for Execution in order to

(a) Abstract Memory Model

OS Reserved
Memory User Memory

System Memory
Workload Memory

Core Memory Storage
Memory

CNN Inference
Memory

(b) Spark Memory Model

OS Reserved
Memory

User Memory

Spark Worker Memory

Core Memory Storage
Memory

CNN Inference
Memory

(c) Ignite Memory Model

OS Reserved
Memory User and Core Memory

System Memory
Ignite Worker Memory

Storage
Memory

CNN Inference
Memory

JVM Heap Memory Moving Boundary

System Memory

Figure 4: (A) Our abstract model of distributed memory apportion-

ing. (B,C) How our model maps to Spark and Ignite.

reduce or avoid disk spills or cache misses [7, 13, 14]. OS
Reserved Memory is generally set to a few GBs. But we note
that such guidelines were designed primarily for relational
workloads. Our workload requires rethinking memory ap-
portioning due to interesting new twists caused by deep
CNN models, (partial) CNN inference, feature layers, and the
downstream ML task.
First, the guideline of using most of System Memory for

Storage and Execution Memory no longer holds. In both
Spark-TF and Ignite-TF environments, CNN inference uses
System Memory outside Storage and Execution Memory re-
gions. The memory footprint of deep CNNs is non-trivial,
e.g., AlexNet needs 2 GB. If we use multiple threads for par-
allelizing query execution in such parallel dataflow systems,
each will spawn its own replica of the CNN, multiplying the
footprint.
Second, many temporary objects are created in memory

when reading serialized CNNs to initialize TF sessions and
for buffers to read inputs and hold feature layers created by
partial CNN inference. All of these go under User Memory.
The sizes of these objects depend on the number of examples
in a data partition, the CNN, and L. They could vary widely,
and they could be massive. For example, layer fc6 of AlexNet
has 4096 features, but conv5 of ResNet has over 400,000 fea-
tures! Such complex memory footprint calculations will be
tedious for data scientists to handle manually.

Third, downstreamML algorithms also copy feature layers
produced by TF into more amenable representations in order
to process them. Thus, StorageMemory should accommodate
these intermediate data copies. Finally, for the join between
the table with the feature layers and Tstr , Core Memory
should accommodate temporary data structures created by
system operations, e.g., the hash table on Tstr for broadcast
join.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

Mapping to Spark’sMemoryModel. Spark allocates User,
Core, and Storage Memory regions of our abstract memory
model from the JVM Heap Space. With default configura-
tions2, Spark allocates 40% of the Heap Memory to User
Memory region. The rest of the 60% is shared between the
Storage and Core Memory regions. The Storage Memory–
Core Memory boundary in Spark is not static. If Spark needs
more of the latter, it borrows automatically from the former
by evicting cached data partitions using an LRU cache re-
placement policy. Conversely, if Spark needs to cache more
data, it borrows from Execution Memory. But there is a max-
imum threshold fraction of Storage Memory (default 50%)
that is immune to eviction. Worker threads in Spark run in
isolation and do not have access to shared memory.

Mapping to Ignite’s Memory Model. Ignite treats both
User and Core Memory regions as a single unified memory
region and allocates the entire JVM Heap for it. This region
is used to store the in-memory objects generated by Ignite
during query processing and UDF execution. Storage Mem-
ory region of Ignite is allocated outside of JVM heap in the
JVM native memory space. Unlike Spark, Ignite’s in-memory
Storage Memory region has a static size and uses an LRU
cache for data stored on persistent storage. Unlike Spark,
worker threads in Ignite can have access to shared memory
(we exploit this in Vista, as explained later).

Memory-related Crash and Inefficiency Scenarios. The
three twists in our workload listed earlier give rise to var-
ious, potentially unexpected, system crash scenarios due
to memory errors, as well as inefficiency issues. Having to
avoid these issues manually could frustrate data scientists
and impede their ML exploration.

(1) CNN blowups.Human-readable file formats of CNNs often
underestimate their in-memory footprints. Along with the
replication of CNNs by multiple threads, CNN Inference
Memory can be easily exhausted. If users do not account for
such blowups when configuring the data processing system,
and if the blowups exceed available memory, the OS will kill
the application.

(2) Insufficient User Memory. All UDF execution threads share
User Memory for the CNNs and feature layer TensorList
objects. If this region is too small due to a small overall
WorkloadMemory size or due to a large degree of parallelism,
such objects might exceed available memory, leading to a
crash with out-of-memory error.

(3) Very large data partitions. If a data partition is too big,
the data processing system needs a lot of User and Core
Execution Memory for query execution operations (e.g., for

2Spark also leave out 300MB of memory from heap as a safety margin, but
this detail does not affect the generic trade-offs we discuss.

the join in our workload and MapPartition-style UDFs in
Spark). If Execution Memory consumption exceeds the al-
located maximum, it will cause the system to crash with
out-of-memory error.

(4) Insufficient memory for Driver Program. All distributed
data processing systems require a Driver program that or-
chestrates the job among workers. In our case, the Driver
reads and creates a serialized version of the CNN and broad-
casts it to the workers. To run the downstream ML task,
the Driver has to collect partial results from workers (e.g.,
for collect() and collectAsMap() in Spark). Without enough
memory for these operations, the Driver will crash.

Overall, several execution and configuration considera-
tions matter for reliability and efficiency. Next, we delineate
these systems trade-offs precisely along three dimensions.

4.2 Dimensions of Trade-offs

The three dimensions of trade-offs we now discuss are rather
orthogonal to each other, but collectively, they affect system
reliability and efficiency. We explain the alternative choices
for each dimension and their runtime implications.

4.2.1 Logical Execution Plan Trade-offs. The first step is
to improve upon the lazy materialization approach (Section
3.2) to avoid computational redundancy and reduce memory
pressure. To see why redundancy exists, consider a popular
deep CNN AlexNet with the last two fully-connected layers
fc7 and fc8 tried for feature transfer (L = {fc7, fc8}). The Lazy
plan, shown in Figure 5 (a), performs partial CNN inference
for fc7 (721 MFLOPS) independently of fc8 (725 MFLOPS),
incurring almost 99% redundant computations for fc8. An
orthogonal issue is join placement: should the join really come

after inference? Usually, the total size of all feature layers in
L will be larger than the size of raw images in a compressed
format such as JPEG. Thus, if the join is pulled below in-
ference, as shown in Figure 5 (b), the shuffle costs of the
join will go down. We call this slightly modified plan Lazy-

Reordered. But note that this plan still has computational
redundancy. The only way to remove redundancy is to break
the independence of the |L| queries and fuse them. This is a
CNN-aware form of multi-query optimization [59]. Realizing
this optimization requires new TensorOps for partial CNN
inference, which we are able to handle because we do not
treat CNN inference as a black box.

The first new plan we consider is the Eager plan, shown in
Figure 5 (c). It materializes all feature layers of L in one go to
avoid redundancy. The features are stored as a TensorList in
an intermediate table and joined withTstr .M is then trained
on each feature layer (concatenated with X) projected from
the TensorList. Eager-Reordered, shown in Figure 5 (d), is a
variant with the join pulled down. Empirically, we find that

Conference’17, July 2017, Washington, DC, USA

./

M

Timg

T 0
imgTstr

8l 2 L :

T

./

M

Timg

T 0
imgTstr

T

./

M

Timg

T 0
img

Tstr

8l 2 L :

T

{gl � f̂l}8l2L

gl � f̂l

gl � f̂l

⇡

M

⇡

. . . M

T

⇡

M

⇡

. . .

T 0
img

TimgTstr

./

{gl � f̂l}8l2L

TimgTstr

./

T 0
img

gl1 � f̂1!l1

T1

M

gl2 � f̂l1!l2 T2

M

. . .

M

glk � f̂lk�1!lk

Tk

(a) Lazy (b) Lazy-Reordered (c) Eager (d) Eager-Reordered (e) Staged

Figure 5: Alternative logical query plans. Plan (a) is the Lazy materialization plan, the de facto practice today. Plan (b) reorders the join

operator in plan (a). Plan (c) is the Eager materialization plan. Plan (d) reorders the join in plan (c). Plan (e) is our new Staged materialization
plan. We define k = |L |.

CNN inference operations dominate overall runtime (85–99%
of total); thus, join placement does not matter much for run-
time although but it eases memory pressure. Nevertheless,
Eager and Eager-Reordered still have high memory pressure,
since they materialize all of L at once. Depending on the
memory apportioning (Section 4.1), this could cause crashes
or a lot of disk spills, which in turn raises runtimes.
To resolve the above issues, we create a logical execu-

tion plan we call Staged materialization, shown in Figure 5
(e). It splits partial CNN inference across the layers in L
and invokes M on branches off the inference path. Staged
avoids redundancy and has lower memory pressure, since
feature materialization is staged out. Interestingly, Eager and
Eager-Reordered are seldom much faster than Staged due to a
peculiarity of deep CNNs. For the former to be much faster,
the CNN must “quickly” (i.e., within a few layers and low
MFLOPs) convert the image to small feature tensors. But
such a CNN architecture is unlikely to yield high accuracy,
since it loses too much information too soon [34]. In fact,
almost no popular deep CNNmodel has such an architecture.
This means Staged typically suffices from both the efficiency
and reliability standpoints (we validate this in Section 5).
Thus, unlike conventional optimizers that consider multiple
logical plans, we use only the Staged plan in Vista.

4.2.2 System Configuration Trade-offs. Logical execution
plans are generic and independent of the data system used.
But as explained in Section 4.1, many system configuration
parameters have a direct impact on reliability and efficiency.
Thus, we need to understand and optimize the trade-offs of
setting such parameters automatically. In particular, we need
to set the degree of parallelism in a worker, data partition
sizes, and memory apportioning.
Naively one might set the degree of parallelism to the

number of cores on the node, allocate few GBs for User and
Core Execution Memory, a majority of the remaining sys-
tem memory for Storage Memory, and leave the number of

partitions to the default value in the data system. Such naive
settings can cause memory-related crashes or inefficiencies.
But tuning these parameters to avoid such issues manually
is tedious and non-trivial, since they are inter-dependent: a
higher degree of parallelism increases the throughput for a
worker but also raises the CNN models’ footprint. In turn,
this means reducing Execution and Storage Memory, which
in turn means the number of partitions should be raised.

Reducing Storage Memory will cause more disk spills, es-
pecially for feature layers, and raise runtimes. Worse still,
User Memory might also become too low, which could cause
crashes during UDF execution. Lowering the degree of paral-
lelism reduces the CNN models’ footprint and allows Execu-
tion and Storage Memory to be higher, but too low a degree
of parallelism means worker nodes might get underutilized 3.
In turn, such underutilization of parallelism could raise run-
times, especially for the join and the downstream ML model
in our workload. Finally, too low a number of data partitions
can cause crashes, while too high a value leads to high over-
head for processing too many data partitions. Overall, one
needs to navigate such non-trivial systems trade-offs that
are closely tied to the CNN model, the sizes of the layers
being compared and the downstream ML model.

4.2.3 Physical Execution Trade-offs. The physical execu-
tion trade-offs are also largely determined by the specifics
of the underlying data system, but two major physical exe-
cution decisions are usually commonly required regardless
of the data system used.

The first decision is the physical join operator to use. The
two main options for distributed joins are shuffle-hash join

and broadcast join. In a shuffle-hash join, base tables are
hashed on the join attribute and partitioned into “shuffle

3Wenote, however, that in the current Spark-TF and Ignite-TF environments,
every TF invocation by a worker uses all cores on the node regardless of how
many cores are assigned to that worker. Nevertheless, one TF invocation
per used core helps increase throughput and reduce runtimes.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

blocks.” Each shuffle block is then send to an assigned worker
over the network, with each worker producing a partition
of the output table using a local sort-merge join or hash join.
In a broadcast join, each worker is sent a copy of the smaller
table on which it builds a local hash table and joins it with
the outer table without any shuffles. If the smaller table fits
in memory, broadcast join is typically faster due to lower
communication and disk I/O overheads.

The second decision is the persistence format for in-memory
storage of intermediate data. Since feature tensors can be
much larger than raw images, this decision helps avoid or
reduce disk spills or cache misses. The two main options
are to store the data in deserialized format or in a more
compressed serialized format. While the serialized format
can reduce memory footprint and thus, reduce disk spills/-
cache misses, it incurs additional computational overhead
for translating between formats. To identify potential disk
spills/cache misses and determine which format to use, we
need to estimate size of the intermediate data tables |Ti | (for
i ∈ L). This requires understanding the internal record for-
mat used by the underlying data system, which we account
for in Vista (Appendix A).
We note that Spark supports both shuffle-hash join and

broadcast join implementations, as well as both serialized
and deserialized in-memory storage formats. In Ignite, data
will be shuffled to the corresponding worker node based on
the partitioning attribute during data loading itself. Thus,
a key-key join can be performed using a local hash join
without any additional data shuffles, if we use the same data
partitioning function for both tables. Ignite always stores
intermediate in-memory data in a compressed binary format.

4.3 The Optimizer

Wenow explain how theVista optimizer navigates the above
dimensions of trade-offs automatically to improve system
efficiency and reliability. The optimizer is based on our ab-
stract memory model. Table 1 lists all the notation used in
this subsection.

Optimizer Formalization and Simplification.The inputs
for the optimizer are listed in Table 1(A). Table 1(B) lists the
variables set by the optimizer. | f |ser , | f |mem, and | f |mem_gpu
are not input directly by the user; Vista has this knowl-
edge of f in its roster. Similarly, |M | is also not input di-
rectly by the user; Vista estimates it based on the specified
M and the largest total number of features (based on L).
For instance, for logistic regression, |M | is proportional to
(|X | +max

l ∈L
|дl (f̂l (I)) |). We define two quantities to capture

peak intermediate data sizes and help our optimizer set mem-
ory parameters reliably:

Table 1: Notation for Section 4 and Algorithm 1.

Symbol Description

(A) Inputs given/ascertained from workload instance

| f |ser Serialized size of CNN model f
| f |mem In-memory footprint of CNN model f
| f |mem_gpu GPU memory footprint of CNN model f
L List of feature layer indices of f user wants to transfer
nnodes Number of worker nodes in cluster
memsys Total system memory available in a worker node
memGPU GPU memory if GPUs are available
cpu

sys
Number of cores available in a worker node

|Tstr | Size of the structured features table
|Timg | Size of the table with images
|Ti | Size of intermediate table Ti with feature layer L[i] of f

as per Figure 5(E); see Equation 15
|M | User Memory footprint of downstream model

(B) System variables/decisions set by Vista Optimizer

memstorage Size of Storage Memory
memuser Size of User Memory
cpu Number of cores assigned to a worker
np Number of data partitions
join Physical join implementation (shuffle or broadcast)
pers Persistence format (serialized or deserailized)

(C) Other fixed (but adjustable) system parameters

memos_rsv Operating System Reserved Memory (default: 3 GB)
memcore Core Memory as per system specific best practice guide-

lines (e.g. Spark default: 2.4 GB)
pmax Maximum size of data partition (default: 100 MB)
bmax Maximum broadcast size (default: 100 MB)
cpu

max
Cap recommended for cpu (default: 8)

α1 Fudge factor for size blowup of storage data objects (de-
fault: 1.2)

α2 Fudge factor for size blowup of binary feature vectors as
JVM objects (default: 2)

ssingle = max
1≤i≤ |L |

|Ti | (5)

sdouble = max
1≤i≤ |L |−1

(|Ti | + |Ti+1 |) − |Tstr | (6)

The ideal objective is to minimize the overall runtime sub-
ject to memory constraints. As explained in Section 4.2.2,
there are two competing factors: cpu and memstorage . Rais-
ing cpu increases parallelism, which could reduce runtimes.
But it also raises the CNN inference memory needed for TF,
which forces memstorage to be reduced, thus increasing po-
tential disk spills/cache misses for Ti ’s and raising runtimes.

Conference’17, July 2017, Washington, DC, USA

This tension is captured by the following objective function:

min
cpu,np,memstorage

τ +max(0, sdoublennodes

−memstorage)

cpu

(7)

The other four variables can be set as derived variables.
In the numerator, τ captures the relative total compute and
communication costs, which are effectively “constant” for
this optimization. The second term captures disk spill costs
for Ti ’s. The denominator captures the degree of parallelism.
While this objective is ideal, it is largely impractical and
needlessly complicated for our purposes due to three rea-
sons. First, estimating τ is highly tedious, since it involves
join costs, data loading costs, downstream model costs, etc.
Second, and more importantly, we hit a point of diminish-
ing returns with cpu quickly, since CNN inference typically
dominates total runtime and TF anyway uses all cores re-
gardless of cpu. That is, this workload’s speedup against cpu
will be quite sub-linear (confirmed by Figure 10(C) in Section
5). Empirically, we find that about 7 cores typically suffice;
interestingly, a similar observation is made in Spark guide-
lines [13, 15]. Thus, we cap cpu at cpu

max
= 8. Third, given

this cap, we can just drop the term minimizing disk spill/-
cache miss costs, since sdouble will typically be smaller than
the total memory (even after accounting for the CNNs) due
to the above cap. Overall, these insights yield a much simpler
objective that is still a reasonable surrogate for minimizing
runtimes:

max
cpu,np,memstorage

cpu (8)

The constraints for the optimization are as follows:

1 ≤ cpu ≤ min{cpu
sys
, cpu

max
} − 1 (9)

memuser =

(a) no shared memory:
cpu ×max{| f |ser + α2 × ⌈ssingle/np⌉, |M |},

(b) shared memory:
max{| f |ser + cpu × α2 × ⌈ssingle/np⌉,
cpu × |M |}

(10)

memos_rsv + cpu × | f |mem +memuser +memcore

+memstorage < memsys

(11)

np = z × cpu × nnodes, for some z ∈ Z+ (12)

⌈ssingle/np⌉ < pmax (13)

If GPUs are available:

cpu × | f |mem_gpu < memGPU (14)

Equation 9 caps cpu and leaves a CPU for the OS. Equa-
tion 10 captures User Memory needed for reading CNN mod-
els and invoking TF, copyingmaterialized feature layers from
TF, and holdingM . If worker threads have access to shared
memory, the serialized CNN model need not be replicated
as shown in Equation 10 (b). cpu × | f |mem is the CNN Infer-
ence Memory needed for TF. Equation 11 constrains the total
memory as per Figure 4. If there is access to GPUs, total GPU
memory footprint cpu× | f |mem_gpu should be upper bounded
by available GPUmemorymemGPU as per Equation 14. Equa-
tion 12 requires np to be a multiple of the number of worker
processes to avoid skews, while Equation 13 bounds the
size of an intermediate data partition as per system specific
guidelines [1].

Optimizer Algorithm. With above observations, the algo-
rithm is simple: linear search on cpu to satisfy all constraints.
4Algorithm 1 presents it formally. If for loop completes with-
out returning, there is no feasible solution, i.e., System Mem-
ory is too small to satisfy some constraints, say, Equation 11.
In this case, Vista notifies the user, and the user can provi-
sion machines with more memory. Otherwise, we have the
optimal solution. The other variables are set based on the
constraints. We set join to broadcast if the predefined maxi-
mum broadcast data size constraint is satisfied; otherwise,
we set it to shuffle. Finally, as per Section 4.2.3, pers is set
to serialized, if disk spills/cache misses are likely (based on
the newly set memstorage). This is a bit conservative, since
not all pairs of intermediate tables might spill, but empiri-
cally, we find that this conservatism does not affect runtimes
significantly (more in Section 5). We leave more complex
optimization criteria to future work.

5 EXPERIMENTAL EVALUATION

We empirically validate if Vista is able to improve efficiency
and reliability of feature transfer workloads. We then drill
into how it handles the trade-off space.

Datasets. We use two real-world datasets: Foods [11] and
Amazon [36]. Foods has about 20, 000 examples with 130
structured numeric features such as nutrition facts along
with pairwise and ternary feature interactions and an image
of each food item. The target represents if the food is plant-
based or not. Amazon is larger, with about 200, 000 examples
with structured features such as price, title, and list of cat-
egories, as well as a product image. The target represents
the sales rank, which we binarize as a popular product or
not. We pre-processed title strings to extract 100 numeric
features (an “embedding”) using the popular Doc2Vec proce-
dure [49]. We convert the indicator vector for categories into

4We explain our algorithm only for the CPU-only scenario with no shared
memory amongworkers. It is straightforward to extend to the other settings.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

Algorithm 1 The Vista Optimizer Algorithm.
1: procedure OptimizeFeatureTransfer:
2: inputs: see Table 1(A)
3: outputs: see Table 1(B)
4: for x = min{cpu

sys
, cpu

max
} − 1 to 1 do ▷ Linear search

5: np ← NumPartitions(s
single
,x ,nnodes)

6: memworker ←memsys −memos_r sv − x × | f |mem
7: memuser ← x ×max{| f |ser + α2 × ⌈ssingle/n′p ⌉, |M |}
8: if memworker −memuser > memcore then

9: cpu ← x
10: memstoraдe ←memworker −memuser −memcore
11: join← shuffle

12: if |Tstr | < bmax then

13: join← broadcast

14: pers ← deserialized

15: if memstoraдe < s
double

then

16: pers ← serialized

17: return (memstorage,memuser , cpu,np , join, pers)

18: throw Exception(No feasible solution)
19:
20: procedure NumPartitions(s

single
,x ,n

nodes
):

21: totalcores ← x × nnodes
22: return ⌈

ssingle
pmax×totalcores

⌉ × totalcores

100 numeric features using PCA. All images are resized to
227 × 227 resolution, as required by most popular CNNs. All
of our data pre-processing scripts and system code will be
made available on our project web page. We hope our efforts
help spur more research on this topic.

Workloads. We use three popular ImageNet-trained deep
CNNs: AlexNet [45], VGG16 [60], and ResNet50 [35], ob-
tained from [5, 10]. They complement each other in terms of
model size and total MFLOPs [25]. We select the following
interesting layers for feature transfer from each: conv5 to fc8
from AlexNet (|L| = 4); fc6 to fc8 from VGG (|L| = 3), and
top 5 layers from ResNet (from its last two layer blocks [35]),
with only the topmost layer being fully-connected. Follow-
ing standard practices [17, 65], we apply max pooling on
the convolutional feature layers to reduce their dimension-
ality before using them for M5. As for M , we run logistic
regression for 10 iterations.

Experimental Setup. We use a cluster with 8 workers and
1 master in an OpenStack instance on CloudLab, a free and
flexible cloud for research [57]. Each node has 32 GB RAM,
Intel Xeon@ 2.00GHz CPU with 8 cores, and 300 GB Seagate
Constellation ST91000640NS HDDs. They run Ubuntu 16.04.
For the Spark-TF environment, we use Spark v2.2.0 with
TensorFrames v0.2.9 integrating it with TensorFlow v1.3.0

5The filter width and stride for max pooling are set to reduce the feature
tensor to a 2 × 2 grid of the same depth.

and for the Ignite-TF environment, we use Ignite v2.3.0 with
TensorFlow v1.3.0. Spark runs in standalone mode. Each
worker runs one executor. HDFS replication factor is three;
input data is ingested to HDFS and read from there. Ignite is
configured with native persistence enabled with each cluster
node running a single worker. Each runtime reported is the
average of three runs with 90% confidence intervals.

5.1 End-to-End Reliability and Efficiency

We compare Vista with five baselines: three naive and two
strong. Lazy-1 (1 CPU per Executor), Lazy-5 (5 CPU per
Executor), and Lazy-7 (7 CPUs per Executor) represent the
current dominant practice of lazy materialization (Section
3.2). Spark is configured based on best practices [7, 13] (29 GB
JVM heap, deserialized, shuffle join, and defaults for all other
parameters, including np and memory apportioning). Ignite
is configured with a 4 GB JVM heap, 25 GB off-heap Storage
Memory, and np set to the default value of 1024. Lazy-5 with
Pre-mat and Eager are strong baselines based on our analysis
of the logical plan trade-offs (Section 4.2.1). In Lazy-5 with

Pre-mat, the lowest feature layer (e.g., conv5 for AlexNet)
is materialized beforehand and used in place of raw images
for all subsequent CNN inference; Pre-mat is time spent on
the pre-materialization part. Eager is eager materialization
plan explained in Section 4.2.1 (with 5 CPUs per Executor).
For Lazy-5 with Pre-mat and Eager, we explicitly apportion
CNN Inference memory. Vista shows the plan picked by our
optimizer, including for system configuration (Section 4.3).
Note that Lazy-5 with Pre-mat and Eager actually require
parts of the Vista code base. Figure 6 presents the results.
We see that Vista improves reliability and/or efficiency

across the board. In the Spark-TF environment, Lazy-5 and
Lazy-7 crash on both datasets for VGG16; Eager crashes
on Amazon for VGG16 and ResNet50. In the Ignite-TF envi-
ronment, Lazy-7 crashes for all models on Amazon, while
for ResNet50, Lazy-7 on Foods and Eager on Amazon also
crash. These crashes are due to memory pressures caused
by CNN model blowups or User Memory blowups (Section
4.1). When Eager does not crash, its efficiency is compara-
ble to Vista, which validates our analysis in Section 4.2.1.
Lazy-5 with Pre-mat does not crash, but its efficiency is com-
parable to Lazy-5 and worse than Vista. This is because
the feature layers of AlexNet and ResNet are much larger
than the raw images, which raises data I/O and join costs
(Appendix C provides runtime breakdowns). Compared to
Lazy-7, Vista is 62%–72% faster; compared to Lazy-1, 58%–
92%. These gains arise because Vista removes redundancy
in partial CNN inference and reduces disk spills. Of course,
the exact gains depend on the CNN and L: if more of the
higher layers are explored, the more redundancy there is
and the faster Vista will be. We also found that if GPUs

Conference’17, July 2017, Washington, DC, USA

Figure 6: End-to-end reliability and efficiency. “×” indicates a system crash. Overall, Vista offers the best or near-best performance and never

crashes, while the alternatives are much slower or crash in some cases.

are used for CNN inference, the overall trends are still the
same even though CNN inference runtimes are significantly
reduced; due to space constraints, we present the GPU re-
sults in Appendix E. Overall, Vista never crashes and offers
the best (or near-best) efficiency on these workloads. This
confirms the benefits of an automatic optimizer such as ours
for improving reliability and efficiency, which could reduce
both user frustration and costs.

5.2 Drill-Down Analysis of Trade-offs

We now analyze how Vista handles each of the three di-
mensions of trade-offs discussed in Section 4. We use the
Spark-TF prototype of Vista, since it is faster than Ignite-
TF. We use the less resource-intensive Foods dataset but al-
ter it “semi-synthetically” for some experiments to analyze
Vista performance in new operating regimes. In particular,
when specified, we vary the data scale by replicating tuples
(denoted, e.g., as “4X”) or varying the number of structured
features (with random values). For the sake of uniformity,
unless specified otherwise, we use all 8 workers, fix cpu to
4, and fix Core Memory to be 60% of the JVM heap. We set
the other parameters as per the Vista optimizer. The layers
explored for each CNN are the same as before.

Logical Plan Decisions. We compare four combinations:
Eager or Staged plan combined with inference After Join or
Before Join. We vary both |L| (by dropping successive lower
layers) and data scale for AlexNet and ResNet. Figure 7 shows
the results. We see that the runtime differences between all
plans are insignificant for low data scales or low |L| on both
CNNs. But as |L| or the data scale goes up, both Eager plans
get much slower, especially for ResNet (Figure 7(B,D)), due to
more disk spills for the massive intermediate table generated.
Across the board, After Join plans are mostly comparable to
their Before Join counterparts but marginally faster at larger
scales. These results validate our choice of only using the
Staged/After Join plan combination, which was plan (e) in
Figure 7 in Section 4.2.1, in Vista.

Physical Plan Decisions. We compare four combinations:
Shuffle or Broadcast join and Serialized or Deserialized per-
sistence format. We vary both data scale and number of

structured features (|Xstr |) for both AlexNet and ResNet. The
logical plan used is Staged/After Join. Figure 8 shows the
results. We see that all four plans are almost indistinguish-
able regardless of the data scale for ResNet (Figure 8(B)),
except at the 8X scale, when the Serialized plans slightly
outperform the Deserialized plans. For AlexNet, the Broad-
cast plans slightly outperform the Shuffle plans (Figure 8(A)).
Figure 8(C) shows that this gap remains as |Xstr | increases
but the Broadcast plans crash eventually. For ResNet, how-
ever, Figure 8(D) shows that both Serialized plans are slightly
faster than their Deserialized counterparts, but the Broadcast
plans still crash eventually. The gap between Serialized and
Deserialized is more significant for ResNet than AlexNet,
since at the 8X scale, its largest intermediate table requires
disk spills. The Vista optimizer handles these trade-offs au-
tomatically.

System Configuration Decisions. We vary cpu and np ,
with the optimizer setting the memory parameters accord-
ingly. The logical-physical plan combination is Staged/After
Join/Shuffle/Deserialized. Figures 9(A,B) show the results for
the three CNNs. As explained in Section 4.3, the runtime
decreases with cpu for all CNNs, but VGG eventually crashes
(at 8 cores) due to the blowup in the CNN Inference Memory
requirement. The runtime decrease with cpu is, however, sub-
linear. To drill into this issue, we plot the speedup against
cpu on 1 node for data scale 0.25X (to avoid disk spills). Fig-
ure 10(C) shows the results: the speedups plateau at about
4 cores. As mentioned in Section 4.3, this is to be expected,
since CNN inference dominates total runtime and TF always
uses all cores regardless of cpu anyway. Appendix C provides
the exact runtime breakdowns.
Figure 9(B) shows non-monotonic behaviors with np . At

very low np , Spark crashes due to insufficient Core Memory
for the join. As np goes up, runtimes go down, since Spark
exploits more of the available parallelism (up to 32 usable
cores). But eventually, runtimes rise again due to Spark over-
heads for handling too many tasks. In fact, when np > 2000,
Spark compresses the task statuses sent to the master, which
increases overhead substantially. The Vista optimizer sets
np at 160, 160, and 224 for AlexNet, VGG, and ResNet respec-
tively, which yield close to the fastest runtimes.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

1 2 3 4

Number of Layers

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

R
u
n
 T

im
e
(m

in
)

(A) AlexNet/Deserialized/Shuffle/2X

1 2 3 4 5

Number of Layers

5

10

15

20

25

30
(B) ResNet50/Deserialized/Shuffle/2X

1X 2X 4X 8X

Data Scale

2
4
6
8

10
12
14
16
18
20

(C) AlexNet/Deserialized/Shuffle/4L

1X 2X 4X 8X

Data Scale

0
50

100
150
200
250
300
350
400
450

(D) ResNet50/Deserialized/Shuffle/5L

Eager/Before Join Eager/After Join Staged/Before Join Staged/After Join

Figure 7: Runtime comparison of logical plan decisions for varying data scale and number of feature layers explored.

1X 2X 4X 8X

Data Scale

2
4
6
8

10
12
14
16
18

R
u
n
 T

im
e
(m

in
)

(A) AlexNet/Staged/After Join/4L

1X 2X 4X 8X

Data Scale

5
10
15
20
25
30
35
40
45
50

(B) ResNet50/Staged/After Join/5L

10 100 1000 10000

Number of Structured Features

12
14
16
18
20
22
24
26
28

(C) AlexNet/Staged/After Join/4L/8X

10 100 1000 10000

Number of Structured Features

35
40
45
50
55
60
65
70
75

(D) ResNet50/Staged/After Join/5L/8X

Shuffle/Deserialized Shuffle/Serialized Broadcast/Deserialized Broadcast/Serialized

Figure 8: Runtime comparison of physical plan decisions for varying data scale and number of structured features.

1 2 4 8

Number of CPUs per Executor

2

4

6

8

10

12

14

16

R
u
n
 T

im
e
(m

in
)

(A) Executor Parallelism

2 8 32 128 512 2048 8192

Number of Data Partitions

0
5

10
15
20
25
30
35
40

R
u
n
 T

im
e
(m

in
)

(B) Number of Partitions

AlexNet/1X/4L VGG16/1X/3L ResNet50/1X/5L

Figure 9: Varying system configuration parameters. Logical and

physical plan choices are fixed to Staged, After Join, Shuffle, and De-
serialized.

1 2 4 8

Scaleup Factor

0.6

0.8

1.0

1.2

1.4

(A) Scaleup

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8
(B) Speedup

1 2 3 4 5 6 7 8

Number of CPUs

1

2

3

4

5

6

7

8
(C) Single node Speedup

AlexNet/1X/4L VGG16/1X/3L ResNet50/1X/5L

Figure 10: (A,B) Scaleup and speedup on cluster. (C) Speedup for

varying cpu on one node with 0.25x data. Logical and physical plan

choices are fixed to Staged, After Join, Shuffle, and Deserialized.

Scalability. Finally, we evaluate the speedup (strong scaling)
and scaleup (weak scaling) of the logical-physical plan com-
bination of Staged/After Join/Shuffle/Deserialized for varying
number of worker nodes (and also data scale for scaleup).
While partial CNN inference andM are embarassingly par-
allel, data reads from HDFS and the join can bottleneck scal-
ability. Figures 10 (A,B) show the results. We see near-linear
scaleup for all 3 CNNs. But Figure 10(B) shows that the
AlexNet sees a markedly sub-linear speedup, while VGG
and ResNet exhibit near-linear speedups. To explain this
gap, we drilled into the Spark logs and obtained the time

breakdown for data reads and CNN inference coupled with
the first iteration of logistic regression for each layer. For
all 3 CNNs, data reads exhibit sub-linear speedups due to
the notorious “small files” problem of HDFS with the im-
ages [12]. But for AlexNet in particular, even the second part
is sub-linear, since its absolute compute time is much lower
than that of VGG or ResNet. Thus, Spark overheads become
non-trivial in AlexNet’s case. Appendix C provides more
analysis of the speedups.

Accuracy. We also checked if the accuracy of the down-
stream ML model is improved when CNN features are added.
We see accuracy lifts of about 3% overall, which is considered
significant in ML practice. But no single feature layer of a
given CNN dominates on accuracy, which validates the need
for a tool like Vista to make it easier and faster to compare
different feature layers. Since accuracy is orthogonal to this
paper’s focus, we discuss further details in Appendix D due
to space constraints.

Summary of Experimental Results.Overall, ignoring the
interconnected trade-offs of logical execution plan, system
configuration, and physical execution plan often raises run-
times (even by 10x) or causes crashes. Staged inference signif-
icantly outperforms both Lazy (the current dominant prac-
tice) and Eager materialization at large scales. Pulling par-
tial CNN inference above the join does not affect efficiency
significantly but eases memory pressure. Proper system con-
figuration for memory apportioning, data partitioning, and
parallelism in a CNN- and feature layer-aware manner is
crucial for reliability and efficiency. If the structured dataset
is small, broadcast join marginally outperforms shuffle join
but causes crashes at larger scales. Serialized disk spills are
comparable to deserialized but marginally better in some

Conference’17, July 2017, Washington, DC, USA

cases. Overall, Vista manages and optimizes such complex
systems trade-offs automatically, freeing data scientists to
focus on their ML-related exploration.

5.3 Discussion and Limitations

TF is a powerful tool for building deep learning models but
has poor support for data independence and structured data
management, which forces users to manually manage data
files, memory, distribution, etc. On the other hand, parallel
dataflow systems and DBMSs offer better physical data inde-
pendence. Thus, a marriage of these complementary frame-
works will be beneficial for unified analytics over structured
and unstructured data. But as our work shows, much work
is still needed to improve system reliability, efficiency, and
user productivity. Vista is a first step in this direction.
We recap key assumptions and limitations of this work.

Vista supports and optimizes large-scale feature transfer
from deep CNNs for multimodal analytics combining struc-
tured data with images (one image per example). It currently
supports a roster of popular CNNs for feature transfer and
linear models for downstream ML and we did not consider
secondary storage space a major concern, but nothing in
Vista makes it difficult to relax these assumptions. For in-
stance, supporting more downstream ML models only re-
quires their memory footprints, while supporting arbitrary
CNNs requires static analysis of TF computational graphs.
We leave such extensions to future work.

6 OTHER RELATEDWORK

Multimodal Analytics. Transfer learning is used for other
multimodal analytics tasks too, including image caption-
ing [43]. Our focus is on systems for integrating images with
structured features. A related but orthogonal line of work
is “multimodal learning” in which deep neural networks
(or other models) are trained from scratch on multimodal
data [55, 61]. While feasible for some applications, this ap-
proach faces the same cost and data issues of training deep
CNNs from scratch, which transfer learning mitigates.

Multimedia DBMSs. There is prior work in the database
and multimedia literatures on DBMSs for “content-based”
image retrieval (CBIR), video retrieval, and other queries
over multimedia data [22, 41]. They relied on older hand-
crafted features such as SIFT and HOG [29, 52], not learned
or hierarchical CNN features, although there is a resurgence
of interest in CBIR with CNN features [64, 66]. Such systems
are orthogonal to our work, since we focus on feature trans-
fer with deep CNNs for multimodal analytics, not CBIR or
multimedia queries. One could integrate Vista with multi-
media DBMSs. NoScope is a system to quickly detect objects
in video streams using cascades of CNNs [42]. Vista is or-
thogonal, since it focuses on feature transfer, not cascades.

Query Optimization. Our work is inspired by a long line
of work on optimizing queries with UDFs, multi-query opti-
mization (MQO), and self-tuning DBMSs. For instance, [26,
37] studied the problem of predicate migration for optimiz-
ing complex relational queries with joins and UDF-based
predicates. Also related is [18], which studied “semantic” op-
timization of queries with predicates based on data mining
classifiers. Unlike such works on queries with UDFs in the
WHERE clause, our work can be viewed as optimizing UDFs ex-
pressed in the SELECT clause for materializing CNN feature
layers. New plans of Vista can be viewed as a form of MQO,
which has been studied extensively for SQL queries [59].
Vista is the first system to apply the general idea of MQO
to complex CNN feature transfer workloads by formalizing
partial CNN inference operations as first-class citizens for
query processing and optimization. Vista can also be viewed
as a model selection management system [47] that optimizes
for CNN-based feature engineering. In doing so, our work ex-
pands a recent line of work on materialization optimizations
for feature selection in linear models [44, 69] and integrat-
ing ML with relational joins [27, 46, 48, 58]. Finally, there
is much prior work on auto-tuning system configuration
for relational and MapReduce workloads (e.g., [38, 63]). Our
work is inspired by those, but we focus specifically on the
large-scale CNN feature transfer workload.

7 CONCLUSIONS AND FUTUREWORK

The success of deep CNNs presents exciting new oppor-
tunities for exploiting images and other unstructured data
sources in data-driven applications that have hitherto relied
mainly on structured data. But realizing the full potential
of this integration requires data analytics systems to evolve
and elevate CNNs as first-class citizens for query process-
ing, optimization, and system resource management. In this
work, we take a first step in this direction by integrating
TensorFlow and parallel dataflow systems to support and
optimize a key emerging workload in this context: feature
transfer from deep CNNs for multimodal analytics. By en-
abling more declarative specification and by formalizing
partial CNN inference, Vista automates much of the data
management-oriented complexity of this workload, thus im-
proving system reliability and efficiency, which in turn can
reduce resource costs and potentially improve data scientist
productivity. As for future work, we plan to support more
general forms of CNNs and downstream ML tasks, as well
as the interpretability of such models in data analytics.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

REFERENCES

[1] Adaptive execution in spark. https://issues.apache.org/jira/browse/
SPARK-9850. Accessed January 31, 2018.

[2] Apache spark: Lightning-fast cluster computing. http://spark.apache.
org. Accessed January 31, 2018.

[3] Benchmarks for popular cnn models. https://github.com/jcjohnson/
cnn-benchmarks. Accessed January 31, 2018.

[4] Big data analytics market survey summary. https:
//www.forbes.com/sites/louiscolumbus/2017/12/24/
53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1.
Accessed January 31, 2018.

[5] Cafee model zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo.
Accessed January 31, 2018.

[6] Deep learning with apache spark and tensor-
flow. https://databricks.com/blog/2016/01/25/
deep-learning-with-apache-spark-and-tensorflow.html. Accessed
January 31, 2018.

[7] Distribution of executors, cores and memory for a spark application
running in yarn. https://spoddutur.github.io/spark-notes/distribution_
of_executors_cores_and_memory_for_spark_application. Accessed
January 31, 2018.

[8] Integrating ml/dl frameworks with spark. https://lists.apache.org/list.
html?dev@spark.apache.org. Accessed January 31, 2018.

[9] Kaggle survey: The state of data science and ml. https://www.kaggle.
com/surveys/2017. Accessed January 31, 2018.

[10] Models and examples built with tensorflow. https://github.com/
tensorflow/models. Accessed January 31, 2018.

[11] Open food facts dataset. https://world.openfoodfacts.org/. Accessed
January 31, 2018.

[12] The small files problem of hdfs. http://blog.cloudera.com/blog/2009/
02/the-small-files-problem/. Accessed January 31, 2018.

[13] Spark best practices. http://blog.cloudera.com/blog/2015/03/
how-to-tune-your-apache-spark-jobs-part-2/. Accessed January 31,
2018.

[14] Spark memory management. https://0x0fff.com/
spark-memory-management/. Accessed January 31, 2018.

[15] Sparkdl: Deep learning pipelines for apache spark. https://github.com/
databricks/spark-deep-learning. Accessed January 31, 2018.

[16] Tensorframes: Tensorflow wrapper for dataframes on apache spark.
https://github.com/databricks/tensorframes. Accessed January 31,
2018.

[17] Transfer learning with cnns for visual recognition. http://cs231n.
github.io/transfer-learning/. Accessed January 31, 2018.

[18] Efficient evaluation of queries with mining predicates. In Proceedings

of the 18th International Conference on Data Engineering (2002), ICDE
’02, IEEE Computer Society, pp. 529–.

[19] Deep neural networks are more accurate than humans at detecting
sexual orientation from facial images, 2017.

[20] Abadi, M., et al. TensorFlow: Large-scale machine learning on het-
erogeneous systems, 2015. Software available from tensorflow.org;
accessed December 31, 2017.

[21] Abadi, M., et al. Tensorflow: A system for large-scale machine learn-
ing. In Proceedings of the 12th USENIX Conference on Operating Sys-

tems Design and Implementation (2016), OSDI’16, USENIX Association,
pp. 265–283.

[22] Adjeroh, D. A., and Nwosu, K. C. Multimedia database management-
requirements and issues. IEEE MultiMedia 4, 3 (Jul 1997), 24–33.

[23] Azizpour, H., et al. Factors of transferability for a generic convnet
representation. IEEE transactions on pattern analysis and machine

intelligence 38, 9 (2016), 1790–1802.

[24] Bhuiyan, S., et al. High performance in-memory computing with
apache ignite.

[25] Canziani, A., et al. An analysis of deep neural network models for
practical applications. CoRR abs/1605.07678 (2016).

[26] Chaudhuri, S., and Shim, K. Optimization of queries with user-
defined predicates. ACM Trans. Database Syst. 24, 2 (June 1999), 177–
228.

[27] Chen, L., et al. Towards linear algebra over normalized data. Proc.
VLDB Endow. 10, 11 (Aug. 2017), 1214–1225.

[28] Chou, H.-T., and DeWitt, D. J. An evaluation of buffer management
strategies for relational database systems. Algorithmica 1, 1-4 (1986),
311–336.

[29] Dalal, N., and Triggs, B. Histograms of oriented gradients for human
detection. In Proceedings of the 2005 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1 -

Volume 01 (2005), CVPR ’05, IEEE Computer Society, pp. 886–893.
[30] Dalal, N., and Triggs, B. Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR 2005.

IEEE Computer Society Conference on (2005), vol. 1, IEEE, pp. 886–893.
[31] Deng, J., et al. Imagenet: A large-scale hierarchical image database.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE

Conference on (2009), IEEE, pp. 248–255.
[32] Donahue, J., et al. Decaf: A deep convolutional activation feature

for generic visual recognition. In Proceedings of the 31st International

Conference on Machine Learning (Bejing, China, 22–24 Jun 2014), E. P.
Xing and T. Jebara, Eds., vol. 32 of Proceedings of Machine Learning

Research, PMLR, pp. 647–655.
[33] Esteva, A., et al. Dermatologist-level classification of skin cancer

with deep neural networks. Nature 542, 7639 (Jan. 2017), 115–118.
[34] Goodfellow, I., et al. Deep Learning. The MIT Press, 2016.
[35] He, K., et al. Deep residual learning for image recognition. In The

IEEE Conference on Computer Vision and Pattern Recognition (CVPR)

(June 2016).
[36] He, R., andMcAuley, J. Ups and downs: Modeling the visual evolution

of fashion trendswith one-class collaborative filtering. In proceedings of
the 25th international conference on world wide web (2016), International
World Wide Web Conferences Steering Committee, pp. 507–517.

[37] Hellerstein, J. M., and Stonebraker, M. Predicate migration: Opti-
mizing queries with expensive predicates. In Proceedings of the 1993

ACM SIGMOD International Conference on Management of Data (1993),
SIGMOD ’93, ACM, pp. 267–276.

[38] Herodotou, H., et al. Starfish: A self-tuning system for big data
analytics. In In CIDR (2011), pp. 261–272.

[39] Huang, G., et al. Densely connected convolutional networks. CoRR
abs/1608.06993 (2016).

[40] Jing, Y., et al. Visual search at pinterest. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (2015), KDD ’15, ACM, pp. 1889–1898.
[41] Kalipsiz, O. Multimedia databases. In IEEE Conference on Information

Visualization. An International Conference on Computer Visualization

and Graphics (2000), pp. 111–115.
[42] Kang, D., et al. Optimizing deep cnn-based queries over video streams

at scale. CoRR abs/1703.02529 (2017).
[43] Karpathy, A., and Fei-Fei, L. Deep visual-semantic alignments for

generating image descriptions. IEEE Trans. Pattern Anal. Mach. Intell.

39, 4 (Apr. 2017), 664–676.
[44] Konda, P., et al. Feature selection in enterprise analytics: A demon-

stration using an r-based data analytics system. Proc. VLDB Endow. 6,
12 (Aug. 2013), 1306–1309.

[45] Krizhevsky, A., et al. Imagenet classificationwith deep convolutional
neural networks. In Advances in Neural Information Processing Systems

25, F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds.

https://issues.apache.org/jira/browse/SPARK-9850
https://issues.apache.org/jira/browse/SPARK-9850
http://spark.apache.org
http://spark.apache.org
https://github.com/jcjohnson/cnn-benchmarks
https://github.com/jcjohnson/cnn-benchmarks
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://www.forbes.com/sites/louiscolumbus/2017/12/24/53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://databricks.com/blog/2016/01/25/deep-learning-with-apache-spark-and-tensorflow.html
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application
https://spoddutur.github.io/spark-notes/distribution_of_executors_cores_and_memory_for_spark_application
https://lists.apache.org/list.html?dev@spark.apache.org
https://lists.apache.org/list.html?dev@spark.apache.org
https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://world.openfoodfacts.org/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2009/02/the-small-files-problem/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
http://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://0x0fff.com/spark-memory-management/
https://0x0fff.com/spark-memory-management/
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/tensorframes
http://cs231n.github.io/transfer-learning/
http://cs231n.github.io/transfer-learning/

Conference’17, July 2017, Washington, DC, USA

Curran Associates, Inc., 2012, pp. 1097–1105.
[46] Kumar, A., et al. Learning generalized linear models over normalized

data. In Proceedings of the 2015 ACM SIGMOD International Conference

on Management of Data (2015), SIGMOD ’15, ACM, pp. 1969–1984.
[47] Kumar, A., et al. Model selection management systems: The next

frontier of advanced analytics. ACM SIGMOD Record 44, 4 (2016),
17–22.

[48] Kunft, A., et al. Bridging the gap: Towards optimization across
linear and relational algebra. In Proceedings of the 3rd ACM SIGMOD

Workshop on Algorithms and Systems for MapReduce and Beyond (2016),
BeyondMR ’16, ACM, pp. 1:1–1:4.

[49] Le, Q., and Mikolov, T. Distributed representations of sentences
and documents. In Proceedings of the 31st International Conference on

Machine Learning (ICML-14) (2014), pp. 1188–1196.
[50] LeCun, Y., et al. Handwritten digit recognition with a back-

propagation network. In Advances in neural information processing

systems (1990), pp. 396–404.
[51] Lecun, Y., et al. Deep learning. Nature 521, 7553 (5 2015), 436–444.
[52] Lowe, D. G. Distinctive image features from scale-invariant keypoints.

Int. J. Comput. Vision 60, 2 (Nov. 2004), 91–110.
[53] McAuley, J., et al. Image-based recommendations on styles and sub-

stitutes. In Proceedings of the 38th International ACM SIGIR Conference

on Research and Development in Information Retrieval (2015), ACM,
pp. 43–52.

[54] Meng, X., et al. Mllib: Machine learning in apache spark. The Journal
of Machine Learning Research 17, 1 (2016), 1235–1241.

[55] Ngiam, J., et al. Multimodal deep learning. In Proceedings of the

28th International Conference on International Conference on Machine

Learning (USA, 2011), ICML’11, Omnipress, pp. 689–696.
[56] Pan, S. J., and Yang, Q. A survey on transfer learning. IEEE Transac-

tions on knowledge and data engineering 22, 10 (2010), 1345–1359.
[57] Ricci, R., and Eide, E. Introducing cloudlab: Scientific infrastructure

for advancing cloud architecturesand applications. ; login: 39, 6 (2014),
36–38.

[58] Schleich, M., et al. Learning linear regression models over fac-
torized joins. In Proceedings of the 2016 International Conference on

Management of Data (2016), SIGMOD ’16, ACM, pp. 3–18.
[59] Sellis, T. K. Multiple-query optimization. ACM Trans. Database Syst.

13, 1 (Mar. 1988), 23–52.
[60] Simonyan, K., and Zisserman, A. Very deep convolutional networks

for large-scale image recognition. CoRR abs/1409.1556 (2014).
[61] Srivastava, N., and Salakhutdinov, R. Multimodal learning with

deep boltzmann machines. vol. 15, JMLR.org, pp. 2949–2980.
[62] V, G., et al. Development and validation of a deep learning algorithm

for detection of diabetic retinopathy in retinal fundus photographs.
JAMA 316, 22 (2016), 2402–2410.

[63] Van Aken, D., et al. Automatic database management system tuning
through large-scale machine learning. In Proceedings of the 2017 ACM

International Conference on Management of Data (New York, NY, USA,
2017), SIGMOD ’17, ACM, pp. 1009–1024.

[64] Wan, J., et al. Deep learning for content-based image retrieval: A
comprehensive study. In Proceedings of the 22nd ACM international

conference on Multimedia (2014), ACM, pp. 157–166.
[65] Yosinski, J., et al. How transferable are features in deep neural

networks? In Proceedings of the 27th International Conference on Neural

Information Processing Systems - Volume 2 (2014), NIPS’14, MIT Press,
pp. 3320–3328.

[66] Yue-Hei Ng, J., et al. Exploiting local features from deep networks
for image retrieval. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (2015), pp. 53–61.
[67] Zaharia, M., et al. Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing. In Proceedings of the 9th

(1234, [1.03, 3.2, ..., 9.2], [4.21, 8.34, ..., 3.23])

Primary Key (PK)
Structured Features Image Features

0X0 1234(8B) (4B) (4B) (4B) (4B)

Null Tracking Bitmap

Fixed length PK

Offset to the Variable Length Structured Features

Offset to the Variable Length Image Features

Length of Variable Length Fields

[1.03, 3.2, ..., 9.2] [4.21, 8.34, ..., 3.23]

Figure 11: Spark’s internal record storage format

USENIX conference on Networked Systems Design and Implementation

(2012), USENIX Association, pp. 2–2.
[68] Zeiler, M. D., and Fergus, R. Visualizing and understanding convo-

lutional networks. In European conference on computer vision (2014),
Springer, pp. 818–833.

[69] Zhang, C., et al. Materialization optimizations for feature selection
workloads. In Proceedings of the 2014 ACM SIGMOD International

Conference on Management of Data (2014), SIGMOD ’14, pp. 265–276.

A ESTIMATING INTERMEDIATE DATA

SIZES

We explain the size estimations in the context of Spark. Ignite
also uses an internal format similar to the Spark. Spark’s
internal binary record format is called “Tungsten record
format,” shown in Figure 11. Fixed size fields (e.g., float) use
8 B. Variable size fields (e.g., arrays) have an 8 B header with
4 B for the offset and 4 B for the length of the data payload.
The data payload is stored at the end of the record. An extra
bit tracks null values.
Vista estimates the size of intermediate tables Tl ∀l ∈

L in Figure 5(E) based on its knowledge of the CNN. For
simplicity, assume ID is a long integer and all features are
single precision floats. Let |X | denote the number of features
in X . |Tstr | and |Timg | are straightforward to calculate, since
they are the base tables. For |Ti | with feature layer l = L[i],
we have:

|Ti | = α1 × (8 + 8 + 4 × |дl (f̂l (I)) |) + |Tstr | (15)

Equation 15 assumes deserialized format; serialized (and
compressed) data will be smaller. But these estimates suffice
as safe upper bounds.

Figure 12 shows the estimated and actual sizes. We see that
the estimates are accurate for the deserialized in-memory
data with a reasonable safety margin. Interestingly, Eager is
not that much larger than Staged for AlexNet. This is because
among its four layers explored the 4th layer from the top is
disproportionately large while for the other two layer sizes
are more comparable. Serialized is smaller than deserialized
as Spark compresses the data. Interestingly, AlexNet feature
layers seem more compressible; we verified that its features
had many zero values. On average, AlexNet features had
only 13.0% non-zero values while VGG16’s and ResNet50’s
had 36.1% and 35.7%, respectively.

Materialization Trade-offs for Feature Transfer from
Deep CNNs for Multimodal Data Analytics Conference’17, July 2017, Washington, DC, USA

Eager Staged
0

1

2

3

4

5

S
iz

e
 (

G
B

)

AlexNet/1X

Eager Staged
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

VGG16/1X

Eager Staged
0

10

20

30

40

50
ResNet50/1X

Estimate Deserialized Serialized

Figure 12: Size of largest intermediate table.

B PRE MATERIALIZING A BASE LAYER

Often data scientists are interested in exploring few of the
top most layers. Hence a base layer can pre-materialized
before hand for later use of exploring other layers. This can
save computations and thereby reduce the runtime of the
CNN feature transfer workload.

However, the CNN feature layer sizes (especially for conv
layers) are generally larger than the compressed image for-
mats such as JPEG (see Table 2). This not only increases the
secondary storage requirements but also increases the IO
cost of the CNN feature transfer workload both when ini-
tially reading data from the disk and during join time when
shuffling data over the network.

Table 2: Sizes of pre-materialized feature layers for the Foods

dataset (size of raw images is 0.26 GB).

Materialized Layer Size (GB)
(layer index starts from the last layer)
1st 2nd 4th 5th

AlexNet 0.08 0.14 0.72
VGG16 0.08 0.20 1.19
ResNet50 0.08 2.65 3.45 11.51

We perform a set of experiments using the Spark-TF sys-
tem to explore the effect of pre-materializing a base layer (1,
2, 4, and 5th layers from top). For evaluating theMLmodel for
the base layer no CNN inference is required. But for the other
layers partial CNN inference is performed starting from the
base layer using the Staged/After Join/Deserialized/Shuffle

logical-physical plan combination. Experimental set up is
same as in Section 5.2.

For AlexNet and VGG16 when materializing 4th , 2nd , and
1st layers from the top, the materialization time increases
as evaluating higher layer requires more computations (see
Figure. 13 (A) and (B)). However, for ResNet50 there is a sud-
den drop from the materialization time of 5th layer features
to the materialization time of 4th layer features. This can be
attributed to the high disk IO overhead of writing out 5th
layer image features which are ∼3 times larger than that of
4th layer (see Figure. 13 (C)). Therefore, for ResNet50 starting

4L 2L 1L
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u
n
 T

im
e
(m

in
)

(A) AlexNet

4L 2L 1L
0

1

2

3

4

5

6

7

8

9
(B) VGG16

5L 4L 2L 1L
0

1

2

3

4

5

6
(C) ResNet50

Materialization Without Pre-Materialization With Pre-Materialization

Figure 13: Runtimes comparison for using pre-materialized fea-

tures from a base layer

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(C) ResNet50

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

(A) AlexNet

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(B) VGG16

CNN inference + LR first iteration Reading images

Figure 14: Drill-down analysis of Speedup Curves

from a pre-materialized feature layer, instead of raw images,
may or may not decrease the overall CNN feature transfer
workload runtime.

C RUNTIME BREAKDOWN

We drill-down into the time breakdowns of the workloads
on Spark-TF environment and explore where the bottlenecks
occur. In the downstream logistic regression (LR) model, the
time spent for training the model on features from a specific
layer is dominated by the runtime of the first iteration. In
the first iteration partial CNN inference has to be performed
starting either from raw images or from the image features
from the layer below and the later iterations will be operating
on top of the already materialized features. Input read time
is dominated by reading images as there are lot of small files
compared to the one big structured data file [12]. Table 3
summarizes the time breakdown for the CNN feature transfer
workload. It can be seen that most of the time is spent on
performing the CNN inference and LR 1st iteration on the
first layer (e.g 5th layer from top for ResNet50) where the
CNN inference has to be performed starting from raw images.
We also separately analyze the speedup behavior for the

input image reading and the sum of CNN inference and LR
1st iteration times (see Figure 14). When we separate out
the sum of CNN inference and LR 1st iteration times, we
see slightly super linear speedups for ResNet50, near linear
speedups for VGG16, and slightly better sub-linear speedups
for AlexNet.

Conference’17, July 2017, Washington, DC, USA

Table 3: Runtime breakdown for the image data read time and 1st iteration of the logistic regression model (Layer indices starts from the top

and runtimes are in minutes).

ResNet50/5L AlexNet/4L VGG16/3L
Number of nodes Number of nodes Number of nodes

1 2 4 8 1 2 4 8 1 2 4 8

La
ye
r

5 19.0 9.5 4.5 2.3
4 3.8 1.8 0.9 0.4 3.7 2.1 1.2 0.7
3 2.7 1.3 0.7 0.4 2.4 1.3 0.7 0.5 43.0 22.0 11.0 5.4
2 2.6 1.3 0.6 0.3 1.1 0.6 0.3 0.2 1.0 0.5 0.3 0.2
1 1.8 0.9 0.4 0.2 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.1

total 29.9 14.8 7.1 3.6 7.5 4.2 2.3 1.5 44.3 22.7 11.4 5.7
Read images 3.7 2.0 1.1 0.7 3.9 2.1 1.2 0.8 4.6 2.5 1.4 0.9

Table 4: Accuracy lifts obtained by incorporating HOG descriptors

and CNN features for logistic regression model with | |ℓ | |1 regular-
ization.

Structured
Only

Structured
+ HOG

Structured
+ CNN

Foods 85.2 86.5 88.3
Amazon 65.4 66.3 68.4

D ACCURACY

For both Foods and a sample of Amazon (20,000 records)
datasets we evaluate the downstream logistic regression
model accuracy with (1) only using structured features, (2)
structured features combined with “Histogram of Oriented
Gradients (HOG)” [30] based image features, and (3) struc-
tured features combined with CNN based image features
from different layers of AlexNet and ResNet models.
In all cases incorporating image features improves the

classification accuracy and the improvement achieved by
incorporating CNN features is higher than the improvement
achieved by incorporating traditional HOG features (see Ta-
ble 4 and Figure 15).

E END-TO-END RELIABILITY AND

EFFICIENCY ON GPUS

GPU experiments are run on Spark-TensorFlow6environment
using the Foods dataset. The experimental setup is a sin-
gle node machine which has 32 GB RAM, Intel i7-6700 @
3.40GHz CPUwhich has 8 cores, 1 TB Seagate ST1000DM010-
2EP1 SSD, and Nvidia Titan X (Pascal) 12GB GPU. The re-
sults are shown in Figure 16. In this setup Lazy-5 and Lazy-7
crashes with VGG16, and Eager crashes with ResNet50.

6Spark TensorFrames library was modified by adding TensorFlow GPU
dependencies to enable GPU support

83

84

85

86

87

88

89

a
cc

u
ra

cy
 (

%
)

(A) Foods with ResNet50

83

84

85

86

87

88

89
(B) Foods with AlexNet

str
uct

str
uct

+ co
nv4_6

str
uct

+ co
nv5_1

str
uct

+ co
nv5_2

str
uct

+ co
nv5_3

str
uct

+ fc
_6

63

64

65

66

67

68

69

a
cc

u
ra

cy
 (

%
)

(C) Amazon with ResNet50

str
uct

str
uct

+ co
nv5

str
uct

+ fc
6

str
uct

+ fc
7

str
uct

+ fc
8

63

64

65

66

67

68

69
(D) Amazon with AlexNet

Figure 15: Accuracy lifts obtained by incorporating image features

from different layers of CNN models for logistic regression model

with | |ℓ | |1 regularization

Figure 16: End-to-end reliability and efficiency on GPU. “×” indi-

cates a system crash.

	Abstract
	1 Introduction
	2 Background
	3 Preliminaries and Overview
	3.1 Definitions and Data Model
	3.2 Problem Statement and Assumptions
	3.3 System Architecture and API

	4 Trade-offs and Optimizer
	4.1 Memory Use Analysis of Workload
	4.2 Dimensions of Trade-offs
	4.3 The Optimizer

	5 Experimental Evaluation
	5.1 End-to-End Reliability and Efficiency
	5.2 Drill-Down Analysis of Trade-offs
	5.3 Discussion and Limitations

	6 Other Related Work
	7 Conclusions and Future Work
	References
	A Estimating Intermediate Data Sizes
	B Pre Materializing a Base Layer
	C Runtime Breakdown
	D Accuracy
	E End-to-End Reliability and Efficiency on GPUs

