Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

ABSTRACT

Deep Convolutional Neural Networks (CNNs) now match
human accuracy in many image prediction tasks, resulting
in a growing adoption in e-commerce, radiology, and other
domains. Naturally, “explaining” CNN predictions is a key
concern for many users. Since the internal workings of CNNs
are unintuitive for most users, occlusion-based explanations
(OBE) are popular for understanding which parts of a im-
age matter most for a prediction. One occludes a region of
the image using a patch and moves it around to produce a
heat map of changes to the prediction probability. Alas, this
approach is computationally expensive due to the large num-
ber of re-inference requests produced, which wastes time
and raises resource costs. We tackle this issue by casting the
OBE task as a new instance of the classical incremental view
maintenance problem. We create a novel and comprehensive
algebraic framework for incremental CNN inference com-
bining materialized views with multi-query optimization to
reduce computational costs. We then present two novel ap-
proximate inference optimizations that exploit the semantics
of CNNs and the OBE task to further reduce runtimes. We
prototype our ideas in Python to create a tool we call Kryp-
TON that supports both CPUs and GPUs. Experiments with
real data and CNNs show that KrYPTON reduces runtimes
by up to 5X (resp. 35X) to produce exact (resp. high-quality
approximate) results without raising resource requirements.

ACM Reference Format:

.2018. Incremental and Approximate Inference for Faster Occlusion-
based Deep CNN Explanations. In Proceedings of ACM Conference
(Conference’17). ACM, New York, NY, USA, 18 pages. https://doi.
org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-X/YY/MM... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Input OCT Retina CNN composed of Convolution, Pool, ReLU, Probability having

Image and Fully-Connected layers Diabetic
Retinopathy
yes 96.3%
> ~ > > <
no 3.7%
Probability of

(a) CNN inference having Retinopathy “‘

yes 15.4%
CNN {
no 84.6%

(b) CNN inference with an occluding patch (c) Occlusion experiment output
Figure 1: (a) Using a CNN to predict diabetic retinopathy
in an OCT image/scan. (b) Occluding a part of the image
changes the prediction probability. (c) By moving the occlud-
ing patch, a sensitivity heat map can be produced.

1 INTRODUCTION

Deep Convolution Neural Networks (CNNs) are now the
state of the art method for many image prediction tasks [1].
Thus, there is growing interest in adopting deep CNNs in
various application domains, including healthcare [2, 3], agri-
culture [4], security [5], and sociology [6]. Remarkably, even
the US Food and Drug Administration recently approved
the use of deep CNNs in radiology to assist radiologists in
processing X-rays and other scans, cross-checking their deci-
sions, and even mitigating the shortage of radiologists [7, 8].

Despite their successes, a key criticism of CNNs is that
their internal workings are unintuitive to non-technical
users. Thus, users often seek an “explanation” for why a
CNN predicted a certain label. Explanations can help users
trust CNNs [9], especially in high stakes applications such as
radiology [10], and are a legal requirement for machine learn-
ing applications in some countries [11]. How to explain a
CNN prediction is still an active research question, but in the
practical literature, an already popular mechanism for CNN
explanations is a simple procedure called occlusion-based
explanations [12], or OBE for short.

OBE works as follows. Place a small square patch (usually
gray or black) on the image to occlude those pixels. Rerun
CNN inference, illustrated in Figure 1 (a), on the occluded
image. The probability of the predicted label will change,
as Figure 1 (b) shows. Repeat this process by moving the
patch across the image to obtain a sensitivity heat map of
the probability changes, as Figure 1 (c) shows. This heat map
will highlight regions of the image that were highly sensitive

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

or “responsible” for the prediction (red/orange color regions).
Such localization of the regions of interest allows users to
gain intuition on what “mattered” for the CNN prediction.
For instance, the heat map can highlight the diseased areas
of a tissue image, which a radiologist can then inspect more
deeply for further tests. Overall, OBE is popular because it
is easy for non-technical users to understand.

Alas, OBE is highly computationally expensive. Deep
CNN inference is already expensive; OBE just amplifies it
by issuing a large number of CNN re-inference requests
(often 1000s) [13]. For example, [14] report over 500,000
re-inference requests for OBE on one image, which took 1hr
even on a GPU! Such long wait times can hinder users’ ability
to consume explanations and reduce their productivity. One
could use more compute hardware, if available, since OBE
is embarrassingly parallel across re-inference requests. But
throwing more machines at it may not always be affordable,
especially for domain scientists, or feasible in all settings,
e.g., in mobile clinical diagnosis. Using extra resources can
also raise monetary costs, especially in the cloud.

In this paper, we use a database-inspired lens to formalize,
optimize, and accelerate OBE. We start with a simple but cru-
cial observation: the occluded images are not disjoint but share
most of their pixels; so, most of CNN re-inference computations
are redundant. This observation leads us to connect OBE with
two classical data management concerns: incremental view
maintenance (IVM) and multi-query optimization (MQO). In-
stead of treating a CNN as a “blackbox,” we open it up and
formalize CNN layers as “queries.” Just like how a relational
query coverts relations to other relations, a CNN layer con-
verts tensors (multidimensional arrays) to other tensors. So,
we reimagine OBE as a set of tensor transformation queries
with incrementally updated inputs. With this fresh database-
inspired view, we introduce several novel CNN-specific query
optimization techniques to accelerate OBE.

Our first optimization is incremental CNN inference. We
materialize all tensors produced by the CNN’s layers on
the given image. For every re-inference request in OBE, in-
stead of rerunning CNN inference from scratch, we treat it
as an IVM query, with the “views” being the tensors. We
rewrite such queries to reuse as much of the materialized
views as possible and recompute only what is needed, thus
avoiding computational redundancy. Such rewrites are non-
trivial because they are closely tied to the complex geometric
dataflows of CNN layers. We formalize such dataflows to
create an algebraic framework of CNN query rewrites. We
also create a static analysis routine to predict how much com-
putations can be saved before running any inference. Going
further, we batch all re-inference requests in OBE to reuse the
same materialized views. This is a form of MQO, albeit inter-
woven with our IVM, leading to a novel batched incremental
CNN inference procedure. We also create a GPU-optimized

kernel for our procedure. To the best of our knowledge, this
is the first instance of IVM being fused with MQO in query
optimization, at least for CNN inference.

We then introduce two novel approximate inference opti-
mizations that allow users to tolerate some degradation in
visual quality of the heat maps produced to reduce runtimes
further. These optimizations build upon our incremental
inference optimization to trade off heat map quality in a
user-tunable manner. Our first approximate optimization,
projective field thresholding, draws upon an idea from neu-
roscience and exploits the internal semantics of how CNNs
work. Our second approximate optimization, adaptive drill-
down, exploits the semantics of the OBE task and the way
users typically consume the heat maps produced. We also
present intuitive automated parameter tuning methods to
help users adopt these optimizations.

We prototype our ideas in the popular deep learning frame-
work PyTorch to create a tool we call KrRypTON. It works on
both CPU and GPU and currently supports a few popular
deep CNNs (VGG16, ResNet18, and InceptionV3). We per-
form a comprehensive empirical evaluation of KrRypTON with
three real-world image datasets from recent radiology and
computer vision papers. KRYPTON yields up to 35X speedups
over the current dominant practice of running re-inference
with just batching for producing high-quality approximate
heat maps and up to 5X speedups for producing exact heat
maps. We then analyze the utility of each of our optimiza-
tions. Overall, this paper makes the following contributions:

e To the best of our knowledge, this is the first paper
to formalize and optimize the execution of occlusion-
based explanations (OBE) of CNN predictions from a
data management standpoint.

e We cast OBE as an IVM problem to create a novel and
comprehensive algebraic framework for incremental
CNN inference. We also combine our IVM technique
with an MQO-style technique to further reduce com-
putational redundancy in CNN inference.

e We present two novel approximate inference optimiza-
tions for OBE that exploit the semantics of CNNs and
properties of human perception.

e We prototype our ideas in a tool, KrypPTON, and per-
form an extensive empirical evaluation with real data
and deep CNNs. KrypTON speeds up OBE by even over
an order of magnitude in some cases.

Outline. Section 2 explains our problem setup, assumptions,
formalization of the dataflow of CNNs. Section 3 presents
our incremental inference and multi-query optimizations.
Section 4 presents our approximate inference optimizations.
Section 5 presents the experiments. We discuss other related
work in Section 6 and conclude in Section 7.

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

Symbol Meaning

f Given deep CNN; input is an image tensor; output is
a probability distribution over class labels

L Class label predicted by f for the original image Z;q

T, Tensor transformation function of layer [of the given
CNN f

P Occlusion patch in RGB format

Sp Occlusion patch striding amount

G Set of occlusion patch superimposition positions on
Limg in (x,y) format

M Heat map produced by the OBE workload

Hy, Wy Height and width of M

O(x,y) Superimposition operator. A o(y,) B, superimposes
B on top of A starting at (x, y) position

I (Limg) Input tensor of layer ! (Input Image)

0, Output tensor of layer [

Cr.,Hr.y, Wr; Depth, height, and width of input of layer [

Co.1,Ho.1, Wo.1 Depth, height, and width of output of layer /
chmv:l

Convolution filter kernels of layer [

Beonov:l Convolution bias value vector of layer [

7(1,001:1 Pooling filter kernel of layer [

Hyc.1, Wye Height and width of filter kernel of layer [

S.15Sx:15 Syt Filter kernel striding amounts of layer I; S; =
(Sx:1> Sy:1), strides along width and height dimensions

P.j; Pr.i; Pyt Padding amounts of layer I; P,; = (Px.1, Py.1), padding

along width and height dimensions

Table 1: Notation used in this paper.

2 SETUP AND PRELIMINARIES

We now state our problem formally and explain our assump-
tions. We then formalize the dataflow of the layers of a CNN,
since these are required for understanding our techniques in
Sections 3 and 4. Table 1 lists our notation.

2.1 Problem Statement and Assumptions

We are given a CNN f that has a sequence (or DAG) of layers
1, each of which has a tensor transformation function T,;. We
are also given the image ;g for which the occlusion-based
explanation (OBE) is desired, the class label L predicted by f
on I;mg, an occlusion patch # in RGB format, and occlusion
patch stride Sp. We are also given a set of patch positions
G constructed either automatically or manually with a vi-
sual interface interactively. The OBE workload is as follows:
produce a 2-D heat map M, wherein each value corresponds
to a position in G and has the prediction probability of L by
f on the occluded image I;’y:img (i.e., superimpose occlu-
sion patch on image) or zero otherwise. More precisely, we
can describe the OBE workload with the following logical
statements:

Conference’17, July 2017, Washington, DC, USA

Wit = L(width(Zimg) —width(P) +1)/Se] (1)
Hpy = [(height(Zimg) — height(P) + 1)/Sp] (2)

M e RHmxWn 3)

Y (x,y)eG: 4)
IJ;,y:img — Limg O.y) P ()

Mx,y] — f(Zy yimg) (L] (6)

Steps (1) and (2) calculate the dimensions of the heat map
M. Step (5) superimposes P on ;4 with its top left corner
placed on the (x, y) location of Z;,,4. Step (6) calculates the
output value at the (x, y) location by performing CNN infer-
ence for 1,); yiimg USINgG f and picks the prediction probability
of L. Steps (5) and (6) are performed independently for every
occlusion patch position in G. In the non-interactive mode,
G is initialized to G = [0, Hps) X [0, Wjy). Intuitively, this
represents the set of all possible occlusion patch positions on
Zimg, which yields a full heat map. In the interactive mode,
the user may manually place the occlusion patch only at a
few locations at a time, yielding partial heat maps.

We assume the CNN is used for classification (or regres-
sion), since only such applications typically use OBE. One
could create CNNs that predict an image “segmentation” in-
stead, but labeling image segments for training such CNNs
is tedious and expensive. Thus, most recent applications of
CNNs in healthcare, sociology, and other domains rely on
classification CNNs and use OBE [2-6]. Other approaches
to explain CNN predictions have been studied, but since
they are orthogonal to our focus, we summarize them in
the appendix due to space constraints. We assume f is from
a roster of well-known deep CNNs; we currently support
VGG16, ResNet18, and InceptionV3. We think this is a rea-
sonable start, since most recent OBE applications use only
such well-known CNNs from model zoos [15, 16]. But we
note that our techniques are generic enough to apply to any
CNN; we leave support for arbitrary CNNs to future work.

2.2 Dataflow of CNN Layers

CNNs are organized as layers of various types, each of
which transforms a tensor (multidimensional array, typically
3-D) into another tensor: Convolution uses image filters
from graphics to extract features, but with parametric fil-
ter weights (learned during training); Pooling subsamples
features in a spatial-aware manner; Batch-Normalization nor-
malizes the output tensor; Non-Linearity applies an element-
wise non-linear function (e.g., ReLU); Fully-Connected is an
ordered collection of perceptrons [17]. The output tensor
of a layer can have a different width, height, and/or depth
than the input. An image can be viewed as a tensor, e.g., a
224x224 RGB image is a 3-D tensor with width and height

Conference’17, July 2017, Washington, DC, USA

Convolution filters contain a bank of Convolution Fmef of Layer 1 ! ‘{" ! ; ;
i o1
r3hD Z/'e"; Dﬁth _Of atSD ";[he’ and g } Rel U operates on individual activation values. } Max Pool operates on local spatial contexts with each
€ depth of the input are the same. 32| 232 | Outputs the maximum of zero and the value. | depth slice separately. Takes in a 2D input and outputs
‘\(‘z 1 i ! Input and output volume both have the same | the maximum of it as output. Height and width of the
Convolution Layer Input 2 | 34 Hea } dimensions. | output is reduced as the stride is greater than one.
| ! Input and output has the same depth dimension.
s . | o= 1
o[oo o |0 | o0 ' Coz = Cz\
M m Elementwise™e_ v Wea - e 1 max(0, X). v\c;w 3
o 13424 21 | O W 893 | -2 ——
H, Convolution Layer el ey !
g 0 | 14 (78345 | 93| 0 Padding=(1,1) —_— 456 59 || —xp ReLU Layer = — Filter Size=(2,2), — Hos
Stride=(1,1) Hoa =Hya | Padding=(0.0), 8
| o # 134 | 49 | 11| 0 I S B T Stride=(2,2)
0 | 14 3|4 o 0 Conv. operates on a local spatial context 58| 1 56 | 8 0 1 Wos
! that spans accorss entire depth of the input
0 0 0 0 0 0 . Size of the output is determined by the Won = Wiz T Won=Wia
W size of input, stride, padding, and filter Convolution Layer Output / ReLU Layer o\ﬂ(pu./ Max Pool Layer Max Pool Layer
sizes. ReLU Layer Input Input Output
Paddng 1 @ 0., =1, (b) O, =15 (©) O3

Figure 2: Simplified illustration of the key layers of a typical CNN. The highlighted cells (dark/red background) show how a
small local spatial context in the first input propagates through subsequent layers. (a) Convolution layer (for simplicity sake,
bias addition is not shown). (b) ReLU Non-linearity layer. (c) Pooling layer (max pooling). Notation is explained in Table 1.

224 and depth 3. A Fully-Connected layer converts a 1-D
tensor (or a “flattened” 3-D tensor) to another 1-D tensor.
For simplicity of exposition, we group CNN layers into 3
main categories based on the spatial locality of how they
transform a tensor: (1) Transformations with a global context,
e.g., Fully-Connected; (2) Transformations at the granularity
of individual elements, e.g., ReLU or Batch Normalization;
and (3) Transformations at the granularity of a local spatial
context, e.g. Convolution or Pooling.

Transformations at the granularity of a global context.
Such layers convert the input tensor holistically into an out-
put tensor without any spatial context, typically with a full
matrix-vector multiplication. Fully-Connected is the only
layer of this type. Since every element of the output will
likely be affected by the entire input, such layers do not offer
a major opportunity for faster incremental computations.
Thankfully, Fully-Connected layers typically arise only as
the last layer(s) in deep CNNs (and never in some recent deep
CNNs), and they typically account for a negligible fraction
of the total computational cost. Thus, we do not focus on
such layers for our optimizations.

Transformations at the granularity of individual ele-
ments. Such layers essentially apply a “map()” function on
the elements of the input tensor, as illustrated in Figure 2
(b). Thus, the output has the same dimensions as the input.
Non-Linearity falls under this category, e.g., with ReLU as
the function. The computational cost is proportional to the
“volume” of the input tensor (product of the dimensions). If
the input is incrementally updated, only the corresponding
region of the output will be affected. Thus, incremental infer-
ence for such layers is straightforward. The computational
cost of the incremental computation is proportional to the
volume of the updated region.

Transformations at the granularity of a local spatial
context. Such layers essentially perform weighted aggrega-
tions of slices of the input tensor, called local spatial contexts,
by multiplying them with a filter kernel (a tensor of weight

parameters). Thus, the input and output tensors can differ
in width, height, and depth. If the input is incrementally
updated, the region of the output that will be affected is not
straightforward to ascertain-this requires non-trivial and
careful calculations due to the overlapping nature of how
filters get applied to local spatial contexts. Both Convolution
and Pooling fall under this category. Since such layers typi-
cally account for the bulk of the computational cost of deep
CNN inference, enabling incremental inference for such lay-
ers in the OBE context is a key focus of this paper (Section
3). The rest of this section explains the machinery of the
dataflow in such layers using our notation. Section 3 then
uses this machinery to explain our optimizations.

Dataflow of Convolution Layers. A layer [has Cp,; 3-D
filter kernels arranged as a 4-D array K.on0.1, With each hav-
ing a smaller spatial width Wy, and height Hy; than the
width Wr,; and height Hy; of the input tensor Z; but the
same depth C7.;. During inference, " filter kernel is “strided”
along the width and height dimensions of the input to pro-
duce a 2-D “activation map” A.. = (ay,x.c) € RHoux Wou
by computing element-wise products between the kernel
and the local spatial context and adding a bias value as per
Equation (7). The computational cost of each of these sev-
eral small matrix products is proportional to the volume
of the filter kernel. All the 2-D activation maps are then
stacked along the depth dimension to produce the output
tensor O,; € RCo*Ho1xWoi Figure 2 (a) presents a simplified
illustration of a Convolution layer.

Cr.; Hy.1=1 Wy, -1
Ay,x:c = Z Z Z Keonvil [C, ksj» i]
k=0 i=0

=0

~

)
X Ik y - 178 = 17K 4)

+ Deono:l [C]
Dataflow of Pooling Layers. Such layers behave essen-

tially like Convolution layers but with a fixed (i.e., not
learned) 2-D filter kernel K,00s.1. Such kernels aggregate

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

a local spatial context to compute its maximum element
(“max pooling”) or average (“average pooling”). But unlike
Convolution, Pooling operates independently on the depth
slices of the input tensor. It takes as input a 3-D tensor O;
of depth Cy, width Wy, and height Hz,;. It produces as
output a 3-D tensor O, with the same depth Cop; = Cr,
but a different width of Wy,; and height Hp;. The filter
kernel is typically strided over more than one pixel at a
time. Thus, Wp.; and Hp,; are usually smaller than Wy
and Hy . Figure 2 (c) presents a simplified illustration of a
Pooling layer. Overall, both Convolution and Pooling layers
have a similar dataflow: they apply a filter kernel along the
width and height dimensions of the input tensor but differ
on how they handle the depth dimension. But since OBE
only concerns the width and height dimensions of the image
and subsequent tensors, we can treat both Convolution and
Pooling layers in a unified manner for our optimizations.

Relationship between Input and Output Dimensions.
For Convolution and Pooling layers, Wp.; and Hp are de-
termined solely by Wr,; and Hr.;, Wy.; and Hyg.j, and two
other parameters that are specific to that layer: stride S.; and
padding P.;. Stride is the number of pixels by which the filter
kernel is moved at a time; it can differ along the width and
height dimensions: Sy.; and S/, respectively. But in prac-
tice, most CNNs have S, = Sy;. Typically, Sxy < Wy
and Sy;; < Hg. In Figure 2, the Convolution layer has
Sxi = Syq = 1, while the Pooling layer has Sy,; = S, = 2.
For some layers, to help control the dimensions of the out-
put to be the same as the input, one “pads” the input with
zeros along the width and height dimensions. Padding P,
captures how much such padding extends these dimensions;
once again, the padding values can differ along the width
and height dimensions: Py.; and Py.;. In Figure 2 (a), the Con-
volution layer has Py,; = Py, = 1. Given all these parameters,
the width (similarly height) of the output tensor is given by
the following formula:

Wo. = Wriy — Weeq + 1+ 2 X Pyp) /Sy (8)

Computational Cost of Inference. Deep CNN inference
is computationally expensive. Convolution layers typically
account for a bulk of the cost (90% or more) [18]. Thus, we
can roughly estimate the computational cost of inference
by counting the number of fused multiply-add (FMA) float-
ing point operations (FLOPs) needed for the Convolution
layers. For example, applying a Convolution filter with di-
mensions (Cr.;, Hy.;, Wx.1) to compute one element of the
output tensor requires Cy.; - Hy.; - Wy, FLOPs, with each
FLOP corresponding to one FMA. Thus, the total computa-
tional cost Q. of a layer that produces output O,; of dimen-
sions (Co.;, Ho.;, Wo.1) and the total computational cost Q

Conference’17, July 2017, Washington, DC, USA

—e— AlexNet
VGG16

—¥— VGG19

—&— ResNetl8

—<— ResNet50

—— DenseNet121
MobileNet

—+— Squeezenetl.0

== Inception3

<9
L

Theoretical Speedup
IS o

i

4 8 12 16 20 24 28 32
Patch Size

Figure 3: Theoretical speedups for popular deep CNN archi-
tectures with incremental inference.

of the entire set of Convolution layers of a given CNN f can
be calculated as per Equations (9) and (10).

Q. = (Cry-Hx. - W) (Cou - Hou - Wour) ©)

0= > (10)
linf

3 INCREMENTAL INFERENCE
OPTIMIZATIONS

We start with a theoretical characterization of how much
speedups we can expect from incremental inference for OBE.
We then dive into our novel algebraic framework that enables
incremental CNN inference and combine it with our multi-
query optimization for OBE.

3.1 Expected Speedups

The basic reason why IVM offers speedups is that when a
part of the input relation is updated, IVM only computes the
part of output that gets changed. We bring the IVM notion
to CNNs; a CNN layer is our “query” and the materialized
feature tensor is our “relation” OBE updates only a part of
the image; so, only some parts of the tensors need to be re-
computed. We create an algebraic framework to determine
which parts these are for a CNN layer (Section 3.2) and how
to propagate updates across layers (Section 3.3). Given a
CNN f and the occlusion patch, our framework determines
using “static analysis” over f how many FLOPs can be saved.
This gives us an upper bound on the possible speedup—we
call this the “theoretical speedup.” More precisely, let the
output tensor dimensions of layer [be (Co.;, Ho.;, Wo.1). An
incremental update recomputes a smaller local spatial con-
text with width Wp,; < Wy, and height Hp.; < Hp,;. Thus,
the computational cost of incremental inference for layer
I, Qinc1, and the total computational cost for incremental
inference for f, Q;,., are given by Equations (11) and (12).

Qinc:t = (Cri - Hycp - Wye1)(Cou - Hpy - Wpy) (1)

Qinc = Z Qincil (12)
linf

Conference’17, July 2017, Washington, DC, USA

The above costs can be much smaller than Q.; and Q in
Equations (9) and (10) earlier. The theoretical speedup is de-
fined as the ratio % It tells us how beneficial incremental
inference can be in the best case without performing the
inference itself. It depends on several factors: the occlusion
patch size, its location, the parameters of layers (kernel di-
mensions, stride, etc.), and so on. Calculating it is non-trivial
and requires careful analysis, which we perform. The loca-
tion of patch affects this ratio because a patch placed in the
corner leads to fewer updates overall than one placed in
the center of the image. Thus, the “worst-case” theoretical
speedup is determined by placing the patch at the center.

We performed a sanity check experiment to ascertain the
theoretical speedups for a few popular deep CNNs. For vary-
ing occlusion patch sizes, we plot the theoretical speedups
of different deep CNNs. Figure 3 shows the results. VGG-16
has the highest theoretical speedups, while DenseNet-121
has the lowest. Most CNNs fall in the 2X-3X range. The dif-
ferences arise due to the specifics of the CNNs’ architectures:
VGG-16 has small Convolution filter kernels and strides,
which means full inference incurs a high computational cost
(Q = 15 GFLOPs). In turn, incremental inference is most
beneficial for VGG-16. Note that we assumed an image size
of 224 x 224 for this plot; if the image is larger, the theoretical
speedups will be higher.

While one might be tempted to think that speedups of 2X-
3X may not be “that significant” in practice, we find that they
indeed are significant for at least two reasons. First, users
often wait in the loop for OBE workloads for performing in-
teractive diagnoses and analyses. Thus, even such speedups
can improve their productivity, e.g., reducing the time taken
on a CPU from about 6min to just 2min, or on a GPU from
1min to just 20s. Second, and equally importantly, incremen-
tal inference is the foundation for our approximate inference
optimizations (Section 4), which amplify the speedups we
achieve for OBE. For instance, the speedup for Inception3
goes up from only 2X for incremental inference to up to
8X with all of our optimizations enabled. Thus, incremental
inference is critical to optimizing OBE.

3.2 Single Layer Incremental Inference

We now present our algebraic framework for incremental
updates to the materialized output tensor of a CNN layer. As
per the discussion in Section 2.2, we focus only on the non-
trivial layers that operate at the granularity of a local spatial
context (Convolution and Pooling). We call our modified
version of such layers “incremental inference operations.”

Determining Patch Update Locations. We first explain
how to calculate the coordinates and dimensions of the out-
put update patch of layer [given the input update patch and

Py Input Padding Output
A — ' 2
i
----- P
o
0 Ypu
1 ' ' o
Loy | Hpy
; ; TR ‘
i
i
,,,,,, 5
1 : Wy
Ypa Updated patch in
______ HY, the output
R
Hp,y
B
e Input patch that needs to be read in
to the transformation operator

| 1
:\\ Updated patch in the input
| ;
Filter kernel WE

Figure 4: Simplified illustration of input and output update
patches for Convolution/Pooling layers.

layer-specific parameters. Figure 4 presents a simplified illus-
tration of these calculations. Our coordinate system’s origin
is at the top left corner. The input update patch is shown in
red/dark color and starts at (x;—,:l, yé;:l), with height H;;:l and
width W7;T ;- The output update patch starts at (xg: I yg: ;) and
has a height Hg: ; and width Wg ;- Due to overlaps among
filter kernel positions during inference, computing the out-
put update patch requires us to read a slightly larger spatial
context than the input update patch—we call this the “read-in
context,” and it is illustrated by the blue/shaded region in
Figure 4. The read-in context starts at (x";: P yﬁz l), with its di-
mensions denoted by Wg , and Hg;: ;- Table 2 summarizes all
this additional notation for this section. The relationship be-
tween these quantities along the width dimension (similarly
along the height dimension) can be expressed as follows:

x70’:l = max(l—(Px:l + x;;:l - Wy + 1)/Sx:l-|’ O) (13)

WS, = min([(Wp,, + Wac = 1)/Sxa 1, Wou) (14)
xg:l = xg:l X Sx:l - Px:l (15)
WE, = Wacs + (W = 1) X Syl (16)

Equation (13) calculates the coordinates of the output up-
date patch. Padding effectively shifts the coordinate system
and thus, P, is added to correct it. Due to overlaps among
the filter kernels, the affected region of the input update
patch will be increased by Wy.; — 1, which needs to be sub-
tracted from the input coordinate x;;: ;- A filter of size Wy,
that is placed starting at x;r,:l — Wye; + 1 will see an update
starting from x;’,: ;- Equation (14) calculates the width of the
output update patch. Given these, a start coordinate and
width of the read-in context are given by Equations (15)
and (16); similar equations hold for the height dimension
(skipped for brevity).

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

Symbol Meaning
x{,: " yé_,: ’ Start coordinates of input update patch for layer [
xﬁz » y;}i . Start coordinates of read-in context for layer [

g " yg . Start coordinates of output update patch for layer [
H, ,f; " Wf: ’ Height and width of input update patch for layer [
H WP y Height and width of read-in context for layer [

H,P "’ Wp ’ Height and width of output update patch for layer [
T Projective field threshold
Tdrill—down Drill-down fraction for adaptive drill-down

Table 2: Additional notation for Sections 3 and 4.

Incremental Inference Operation. For layer /, given the
transformation function T,;, the pre-materialized input ten-
sor I, input update patch PO, and the above calculated
coordinates and dimensions of the input, output, and read-in
context, the output update patch 7):? is computed as follows:

U = Lyl xgy xpy + Wi Yy 2 Ypy + Hpgl (A7)
uU=u o("ézl_ Pt Upa =) (18)
P9 = T)(U) (19)

Equation (17) slices the read-in context U from the pre-
materialized input tensor 7;. Equation (18) superimposes the
input update patch PII on it. This is an in-place update of
the array holding the read-in context. Finally, Equation (19)
computes the output update patch 50:? by invoking T;; on
U. Thus, we avoid performing inference on all of 7;, thus
achieving incremental inference and reducing FLOPs.

3.3 Propagating Updates across Layers

Sequential CNN . Unlike relational IVM, CNNs have many
layers, often in a sequence. This is analogous to having a
sequence of queries that require IVM on their predecessor’s
updated output. This leads to a new issue: correctly and au-
tomatically configuring the update patches across all layers
of a CNN. Specifically, output update patch 7)0 of layer [
becomes the input update patch of layer [+ 1. Whlle this
seems simple, it requires care at the boundary of a local
context transformation and a global context transformation,
e.g., going from a Convolution layer (or Pooling layer) to a
Fully-Connected layer. In particular, we need to materialize
the full updated output instead of propagating just the output
update patches, since the global context transformation lose
spatial locality for subsequent layers.

Extension to DAG CNNs. Some recent deep CNNs have
a more general directed acyclic graph (DAG) structure for
layers. They have two new kinds of layers that “merge” two
branches in the DAG: element-wise addition and depth-wise

Conference’17, July 2017, Washington, DC, USA

Input 1 Input 2

7 .1 o 0 o
(py5 Yp,) (Co) Hp,
g1 7 .1

Hp | Gp,0Yp,0)

- 1 I
M 4 B
Poil o

1
WP, -l -+ -

T O
WPg :l WP:!

Figure 5: Illustration of bounding box calculation for differ-
ing input update patch locations for element-wise addition
and depth-wise concatenation layers in DAG CNNs.

concatenation. Element-wise addition requires two input ten-
sors with all dimensions being identical. Depth-wise con-
catenation takes two input tensors with the same height and
width dimensions. We now face a new challenge-how to
calculate the output update patch when the two input ten-
sors differ on their input update patches locations and sizes?
Figure 5 shows a simplified illustration of this issue. The first
input has its update patch starting at coordinates (xé: P yél 2

with dimensions HZ , and W ,
Pyl Pyl

its update patch starting at coordinates (xf) "

dimensions H, I Pl and WI . This issue can arise with both

while the second input has

yi) with

element-wise addition and depth wise concatenation.

We propose a simple unified solution: compute the bound-
ing box of the input update patches. So, the coordinates and
dimensions of both read-in contexts and the output update
patch will be identical. Figure 5 illustrates this. While this
will potentially recompute parts of the output that do not
get modified, we think this trade-off is acceptable because
the gains are likely to be marginal for the additional com-
plexity introduced into our framework. Overall, the output
update patch coordinate and width dimension are given by
the following (similarly for the height dimension):

O _ s T T
Xpy = m1n(x9,)1:l,x9D2)
o _ I T wi Lo T T
Wg, = max(xpl:l + W l,xP gt Pz:l) —m1n(x¢,1:l,x¢,2:l)
(20)

3.4 Multi-Query Incremental Inference

OBE issues |G| re-inference requests in one go. Viewing each
request as a “query” makes the connection with multi-query
optimization (MQO) [19] clear. The |G| queries are also not
disjoint, since the occlusion patch is typically much smaller
than the image, which means most the pixels are the same
for each query. Thus, we now extend our IVM framework
for one re-inference with an MQO-style optimization fusing
multiple re-inference requests. An analogy with relational
queries would be having many incremental update queries
on the same relation in one go, with each query receiving a
different incremental update.

Conference’17, July 2017, Washington, DC, USA

Algorithm 1 BATCHEDINCREMENTALINFERENCE

Input:
T : Original Transformation function
I : Pre-materialized input from original image
[P 11y s P] - Input patches
[(xf)l:l, yé_,]:l), - (xén:l, yé—,n:l)] : Input patch coordinates

Wé:l, H;;z : Input patch dimensions
1: procedure BATCHEDINCREMENTALINFERENCE
2 Calculate [(xglzl, yglll), (xgn:l, yg,,;z)]
3: Calculate (ng, Hg:l)
4 Calculate [(x;lflzl, yglzl), - (xgn:l, ygn :)]
5: Calculate (WZf:l, H;S:,)
6: Initialize U € R™<9ePthED<HE X W,
7: fori in [1,...,n]do
8 Ty Lilsxg, xp A W Up gt Y, +Hi,]
’ L= hoowy g .f, o0 Pt
10: Uli,:,:] « T
11: [Pl?l, ey Pgl] «— T(U) > Batched version
12: return [733, s 7’21],
5 R0 0D,) V2 HD)

Batched Incremental Inference. Our optimization works
as follows: materialize all tensors once and reuse them for
incremental CNN inference across all |G| queries. Since most
of the occluded image pixels are identical, parts of the ten-
sors will likely be identical too. Thus, we amortize the cost
of materializing the tensors across all |G| queries. One might
wonder, why not just perform “batched” inference for the
|G| queries? Batched inference is standard practice today for
high-throughput compute hardware like GPUs, since it amor-
tizes CNN set up costs, data movement costs, etc. Batch sizes
are picked to optimize hardware utilization. We observed
that batching is an orthogonal (albeit trivial) optimization
compared to our optimization. Thus, we can combine both
of these ideas to execute incremental inference in a batched
manner. We call this approach “batched incremental infer-
ence.” Empirically, we found that batching alone yields only
limited speedups (under 2X), but combining batching and
incremental inference as we do can amplify the speedups.
Algorithm 1 formally presents the batched incremental in-
ference operation for layer I.
BATCHEDINCREMENTALINFERENCE first calculates the geo-
metric properties of the output update patches and read-in
contexts. A temporary tensor U is initialized to hold the
input update patches with their read-in contexts. The for
loop iteratively populates U with corresponding patches.
Finally, T is applied to U to compute the output patches. We
note that only for the first layer, all input update patches will

be identical to the occlusion patch. But for the later layers,
the update patches will start to deviate depending on their
locations and read-in contexts.

GPU Optimized Implementation. Empirically, we found
a dichotomy between CPUs and GPUs: BATCHEDINCREMEN-
TALINFERENCE yielded expected speedups on CPUs, but it
performed dramatically poorly on GPUs. In fact, a naive im-
plementation of BATCHEDINCREMENTALINFERENCE on GPUs
was slower than full re-inference! We now shed light on why
this is the case and how we tackled this issue. The for loop
in line 7 of Algorithm 1 is essentially preparing the input
for T; by copying values (slices of the materialized tensor)
from one part of GPU memory to another sequentially. A
detailed profiling of the GPU showed that these sequential
memory copies are a bottleneck for GPU throughput, since
they throttle it from exploiting its massive parallelism effec-
tively. To overcome this issue, we created a custom CUDA
kernel to perform input preparation more efficiently by copy-
ing memory regions in parallel for all items in the batched
inference request. This is akin to a parallel for loop tailored
for slicing the tensor. We then invoke T.;, which is already
hardware-optimized by modern deep learning tools [20]. We
defer more details on our custom CUDA kernel to the appen-
dix due to space constraints. Also, since GPU memory might
not be enough to fit all |G| queries, the batch size for GPU
execution might be smaller than |G].

3.5 Putting it All Together

We summarize the end-to-end workflow of our incremental
inference optimizations for OBE. We are given the CNN f,
image Z;mg, predicted class label L, occlusion patch # and
its stride Sp, and the set of occlusion patch positions G. Pre-
materialize the output tensors of all layers of f with 1, as
the input. Prepare occluded images (I(x) for all posi-

tions in G. For batches of I('x’y):img
transformations functions of the layers of f in topological
order and calculate the corresponding entries of heat map
M. For transformations with local spatial context, invoke
BATCHEDINCREMENTALINFERENCE. For layer that precede a
global context transformation, materialize the full updated
output. For all other layers, invoke the original transforma-
tion function. M is now the output heat map.

4 APPROXIMATE INFERENCE
OPTIMIZATIONS

Since incremental inference is exact, i.e., it yields the same
heat map as full inference, it does not exploit a capability of
human perception: tolerance of some degradation in visual
quality. Thus, we now build upon our IVM framework to cre-
ate two novel heuristic approximate inference optimizations
that trade off the heat map’s quality in a user-tunable manner

L, y):img
as the input, invoke the

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

/]

[]

(b) Projective field thresholding

(a) Projective Field

Figure 6: (a) Projective field growth for 1-D Convolution (fil-
ter size 2, stride 1). (b) Projective field thresholding; v = 5/7.

(a) VGG16 ResNet18 Inception3
14
a 8
3 8
g 12
2
@ 10 6 ‘\'—0\.._.\‘_.\. 6 '—‘-—o—o\'_._._.
- REee=al
B 81 e 4 —r e .
g N\ by o S R R P o e e S S
£ 6 T b D ——
P] | 2 e
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Patch Size Patch Size Patch Size
(b) 1e-3 VGGle ResNet18 1e—1 Inception3
6 1.5 6
4 m_,_._,,p—o-'—o" N R N
2 A& A
= ¥ ¥ ¥ ¥ 77
2 :i 05 T T 2% +—o—
o T T T T T T T T 0.0 T T T T T T T T 01 T T T T T T T
4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32 4 8 12 16 20 24 28 32
Patch Size Patch Size Patch Size
—# t=10 T=09 % T=08 —h =07 H— T=06 —4- T=05 =04

Figure 7: (a) Theoretical speedups with projective field
thresholding. (b) Mean Square Error between exact and ap-
proximate output of final Convolution/Pooling layers.

to accelerate OBE further. We first explain the techniques
and then explain how to tune them.

4.1 Projective Field Thresholding

The projective field of a CNN neuron is the slice of the output
tensor that is connected to it [22]. It is a term from neuro-
science to describe the effects of a retinal cell on the output
of the eye’s neuronal circuitry [23]. This notion sheds light
on the growth of the size of the update patches through the
layers of a CNN. The 3 kinds of layers (Section 2.2) affect the
projective field size growth differently. Transformations at
the granularity of individual elements do not alter the projec-
tive field size. Global context transformations increase it to
the whole output. But local spatial context transformations,
which are the most crucial, increase it gradually at a rate
determined by the filter kernel’s size and stride: additively
in the size and multiplicatively in the stride. The growth of
the projective field size implies the amount of FLOPs saved
by IVM decreases as we go to the higher layers of a CNN.

Conference’17, July 2017, Washington, DC, USA

Eventually, the output update patch becomes as large as the
output tensor. This growth is illustrated by Figure 6 (a).

Our above observation motivates the main idea of this
optimization, which we call projective field thresholding:
truncate the projective field from growing beyond a given
threshold fraction T (0 < 7 < 1) of the output size. This
means inference in subsequent layers is approximate. Fig-
ure 6 (b) illustrates the idea for a filter size 3 and stride 1. One
input element is updated (shown in red/dark); the change
propagates to 3 elements in the next layer and then 5, but
it then gets truncated because we set 7 = 5/7. This approxi-
mation can alter the accuracy of the output values and the
heat map’s visual quality. Empirically, we find that modest
truncation is tolerable and does not affect the heat map’s
visual quality too significantly.

To provide intuition on why the above happens, consider
histograms on the side of Figures 6 (a,b) that list the number
of unique “paths” from the updated element to each element
in the last layer. It resembles a Gaussian distribution, with
the maximum paths concentrated on the middle element.
Thus, for most of the output patch updates, truncation will
only discard a few values at the “fringes” that contribute
to an output element. Of course, we do not consider the
weights on these “paths,” which is dependent on the given
trained CNN. Since the weights can be arbitrary, a tight
formal analysis is unwieldy. But under some assumptions
on the weights values (similar to the assumptions in [24] for
understanding the “receptive field” in CNNs), we show in
the appendix that this distribution does indeed converge to a
Gaussian. Thus, while this idea is a heuristic, it is grounded
in a common behavior of real CNNs. Overall, since most of
the contributions to the output elements are concentrated
around the center, such truncation is often affordable. Note
that this optimization is only feasible in conjunction with our
incremental inference framework (Section 3) to reuse the
remaining parts of the tensors and save FLOPs. We extend
the formulas for the output-input coordinate calculations to
account for 7. For the width dimension, the new formulas
are as follows (similarly for the height dimension):

W2, = min([(W, + Wi -)/Sel. WD) (1)
If WS, > round(r x W) : 22)
W, = round(z x W) (23)
Wi’rngw:l = W) X St = Wi +1 (24)
Xy += Wpy = Wp, 1)/2 (25)
Wit =W, i (26)

x2. =max([(Px:, + x5, — W +1) /Sy, 0) (27)

Equation (21) calculates the width assuming no thresh-
olding. But if the output width exceeds the threshold, it is

Conference’17, July 2017, Washington, DC, USA

reduced as per Equation (23). Equation (24) calculates the
input width that would produce an output of width W,}? ;s we

can think of this as making Wy‘; ; the subject of Equation (21).
If the new input width is smaller than the original input
width, the starting x coordinate should be updated as per
Equation (25) s.t. the new coordinates correspond to a “center
crop” compared to the original. Equation (26) sets the input
width to the newly calculated input width. Equation (27)
calculates the x coordinate of the output update patch.

Theoretical Speedups. We modify our “static analysis”
framework to determine the theoretical speedup of incre-
mental inference (Section 3) to also include this optimization
using the above formulas. Consider a square occlusion patch
placed on the center of the input image. Figure 7 (a) plots
the new theoretical speedups for varying patch sizes for 3
popular CNNss for different 7 values. As expected, as 7 goes
down from 1, the theoretical speedup goes up for all CNNs.
Since lowering 7 approximates the heat map values, we also
plot the mean square error (MSE) of the elements of the
exact and approximate output tensors produced by the final
Convolution or Pooling layers on a sample (n=30) of real-
world images. Figure 7 (b) shows the results. As expected, as
7 drops, MSE increases. But interestingly, the trends differ
across the CNNs due to their different architectural proper-
ties. MSE is especially low for VGG-16, since its projective
field growth is rather slow relative to the other CNNs. We
acknowledge that using MSE as a visual quality metric and
tuning 7 are both unintuitive for humans. We mitigate these
issues in Section 4.3 by using a more intuitive quality metric
and by presenting an automated tuning method for 7.

4.2 Adaptive Drill-Down

This optimization is also a heuristic, but it is based on our
observation about a peculiar semantics of the OBE task. It
modifies the way G (the set of occlusion path locations) is
specified and handled, especially in the non-interactive spec-
ification mode. We explain our intuition with an example.
Consider a radiologist explaining a CNN prediction for dia-
betic retinopathy on a tissue image. The region of interest
typically occupies only a tiny fraction of the image. Thus, it
is an overkill to perform regular OBE for every patch loca-
tion: most of the (incremental) inference computations are
effectively “wasted” on uninteresting regions. In such cases,
we modify the OBE workflow to produce an approximate
heat map using a two-stage process, illustrated by Figure 8
(a).

In stage one, we produce a lower resolution heat map by us-
ing a larger stride-we call it stage one stride S;. Using this heat
map, we identify the regions of the input that see the largest
drops in predicted probability of the label L. Given a pre-
defined parameter drill-down fraction, denoted r4,i11-down.,

e

1
|
|
|
I .
| Idrill-down S; fixed
| fixed
I 2 E
- I3 k=]
g, Final Output | & 3
2 | @ o
g
e |
&
3 ' S
2 | 1 Tdrill-down
<
o I
|
1

0.5

(@

(b)

Figure 8: (a) Schematic illustration of the adaptive drill-
down idea. (b) Conceptual depiction of the effects of S; and
Tdrill-down ON the theoretical speedup..

we select a proportional number of regions based on the
probability drops. In stage two, we perform OBE only for
these regions with original stride value (we also call this
stage two stride, Sy) for the occlusion patch to yield a portion
of the heat map at the original higher resolution. Since this
process “drills down” adaptively based on the lower reso-
lution heat map, we call it adaptive drill-down. Note that
this optimization also builds upon the incremental inference
optimizations of Section 3, but it is orthogonal to projective
field thresholding and can be used in addition.

Theoretical Speedups. We now define a notion of theo-
retical speedup for this optimization; this is independent of
the theoretical speedup of incremental inference. We first
explain the effects of r4,i71-gown and S;. Setting these param-
eters is an application-specific balancing act. If 74, ;71—dgown 1S
low, only a small region will need re-inference at the original
resolution, which will save a lot of FLOPs. But this may miss
some regions of interest and thus, compromise important
explanation details. Similarly, a large S; also saves a lot of
FLOPs by reducing the number of re-inference queries in
stage one. But it runs the risk of misidentifying interesting
regions, especially when the size of those regions are smaller
than the occlusion patch size. We now define the theoretical
speedup of adaptive drill-down as the ratio of the number of
re-inference queries for regular OBE without this optimiza-
tion to that with this optimization. We only need the counts,
since the occlusion patch dimensions are unaltered, i.e., the
cost of a re-inference query is the same with or without this
optimization. Given a stride S, the number of re-inference
W,

. . Hp T; . .
queries is —g~* - —s~. Thus, the theoretical speedup is

given by the following equation. Figure 8 (b) illustrates how
this ratio varies with S; and rg4,i1/—down-

St
speedup =

(28)
55 + rdrill-down Sf

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

4.3 Automated Parameter Tuning

We now present automated parameter tuning methods for
easily configuring our approximate inference optimizations.

Tuning projective field thresholding. As Section 4.1 ex-
plained, 7 controls the visual quality of the heat map. There
is a spectrum of visual quality degradation: imperceptible
changes to major structural changes. But mapping 7 to visual
quality directly is likely to be unintuitive for users. Thus, to
measure visual quality more intuitively, we adopt a cognitive
science-inspired metric called Structural Similarity (SSIM)
Index, which is widely used to quantify human-perceptible
differences between two images [25]. In our case, the two
“images” are the original and approximate heat maps. SSIM
is a number in [—1, 1], with 1 meaning a perfect match. SSIM
values in the [0.90, 0.95] range are considered almost imper-
ceptible distortions in many practical multimedia applica-
tions such as image compression and video encoding [25].

Our tuning process for 7 has an offline “training” phase
and an online usage phase. The offline phase relies on a
set of sample images (default 30) from the same application
domain. We compute SSIM for the approximate and exact
heat maps for all sample images for a few r values (default
1.0,0.9,0.8, .. .,0.4). We then learn a second-degree polyno-
mial curve for SSIM as a function of 7 with these data points.
Figure 9 (a) illustrates this phase and the fit SSIM-7 curves for
3 different CNNs using sample images from an OCT dataset
(Section 5). In the online phase, when OBE is needed on a
given image, we expect the user to provide a target SSIM for
the quality-runtime trade-off they want (1 yields the exact
heat map). We can then use our learned curve to map this
target SSIM to the lowest 7. Figure 9 (b) shows the CDFs of
differences between the target SSIM (0.9) and the actual SSIM
yielded when using our auto-tuned 7 on both the training
set and a holdout test set (also 30 images). In 80% of the cases,
the actual SSIM was better than the user-given target; never
once did the actual SSIM go 0.1 below the target SSIM. This
suggests that our auto-tuning method for 7 works, is robust,
and applicable to different CNNss.

Tuning adaptive drill-down. As Section 4.2 explained,
the speedup offered by adaptive drill-down is controlled
by two parameters: stage one stride S; and drill-down frac-
tion rgrili—down- We expect the user to provide rg,i1—down
(default 0.25), since it captures the user’s intuition about
how large or small the region of interest is likely to be in
the images in their specific application domain and dataset.
We also expect the user to provide a “target speedup” ratio
(default 3) for using this optimization to capture their desired
quality-runtime trade-off. Higher the user’s target speedup,
the more we sacrifice the quality of the “non-interesting
regions” (1 — rgrill-down fraction of the heat map). Our

Conference’17, July 2017, Washington, DC, USA

VGG16 ResNet18 Inception3
1.0 s o810 %101 i
i; Il il 00 II il 081® * ¢! II I! [
0914 4 081 7§ : II B " []
= |8 || i osla B-g
Zo0s8 06le ¥ - I | Bry
el oot h.3
| o
0.7 [} 0.4 4
e 0.4 Ii ll [)
) 0215 @
0614 fic| 18 °
0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.4 0.5 0.6 0.7 0.8 0.9 1.0
(b)
SSIM =09 >7=05 SSIM=09—->7=0.7 SSIM =09 - 7=0.
100 ————1]100 100 4 p——
2 7~ /
g 80 s 80 80 4 7~
5] /
S 60 60 60 f
E J
B 40 40 40 4 J
2 /
E | J
3 20 / — train { 20 20
f test J
0 0 0

-1 0 1 0 1 -1 0 1
x1071 %1071 x1071
SSIM arger — SSIM ucrual

Figure 9: (a) Fitting a second-order curve for SSM against r on
a sample of the OCT dataset. (b) CDFs of deviation of actual
SSIM from the target SSIM (0.9) with our auto-tuned 7, which
turned out to be 0.5, 0.7, and 0.9 for VGG-16, ResNet-18, and
Inception-V3, respectively.

automated tuning process sets S; using these two user-given
settings. Unlike the tuning of 7, setting S; is more direct,
since this optimization relies on the number of re-inference
queries, not SSIM. Let target denote the target speedup; the
original occlusion patch stride is S;. Equation 29 shows how
we calculate S;. Since S; cannot be larger than the image
width Wiy, (similarly H;p,g) and due to the constraint of
(1 = rgrilidown * SPeedup) being positive, we also have an
upper bound on the possible speedups as per Equation 30.

target
S, = :
1 —Tarill-down - target
2
Wiing 1
2 2 (30)
Sz + Vdrill-down ° M/img Tdrill-down

S (29)

speedup < mi n(

5 EXPERIMENTAL EVALUATION

We integrated all of our optimization techniques with the
popular deep learning environment PyTorch to create a tool
we call KrypTOoN. We now evaluate the speedups yielded
by KrypToN for OBE for several deep CNNs on real-world
image datasets. We then drill into the contributions of each
of our optimization techniques.

Datasets. We use three diverse real-world image datasets:
OCT, Chest X-Ray, and a sample from ImageNet. OCT has
about 84,000 optical coherence tomography retinal images
with four classes: CNV, DME, DRUSEN, and NORMAL.
CNV (choroidal neovascularization), DME (diabetic mac-
ular edema), and DRUSEN are three varieties of diabetic
retinopathy. NORMAL corresponds to healthy retinal im-
ages. Chest X-Ray has about 6,000 X-ray images with three

Conference’17, July 2017, Washington, DC, USA

classes: VIRAL, BACTERIAL, and NORMAL. VIRAL and
BACTERIAL are two varieties of pneumonia. NORMAL
corresponds to healthy people. Both OCT and Chest X-Ray
are from a recent scientific study that applied deep CNNs
to radiology images to detect the respective diseases [2].
ImageNet is a benchmark dataset in computer vision [26];
our sample has 1,000 images with 200 classes.

Workloads. We use 3 diverse ImageNet-trained deep CNNss:
VGG16 [27], ResNet18 [28], and Inception3 [29], obtained
from [30]. They complement each other in terms of model
size, architectural complexity, computational cost, and our
predicted theoretical speedups (Figure 3 in Section 3). For
OCT and Chest X-Ray, the 3 CNNs were fine-tuned by re-
training their final Fully-Connected layers as per standard
practice. The details of fine-tuning are not relevant for the
rest of our discussion; so, we present further details in the
appendix. The OBE heat maps are plotted using Python Mat-
plotlib’s imshow method using the jet_r color scheme; we
set the maximum threshold to min(1, 1.25p) and minimum to
0.75p, where p is predicted class probability on a given image.
All images are resized to the input size required by the CNNs
(224x 224 for VGG16 and ResNet18; 299 x 299 for Inception3);
no additional pre-processing was done. The GPU-based ex-
periments used a batch size of 128; for CPUs, the batch size
was 16. All CPU-based experiments were executed with a
thread parallelism of 8. All of our datasets, experimental
scripts, and the KrypTON codebase will be made publicly
available on our project webpage.

Experimental Setup. We use a machine with 32 GB RAM,
Intel i7-6700 3.40GHz CPU, and NVIDIA Titan X (Pascal)
GPU with 12 GB memory. The machine runs Ubuntu 16.04
with PyTorch version 0.4.0, CUDA version 9.0, and cuDNN
version 7.1.2. All reported runtimes are the average of 3 runs,
with 95% confidence intervals shown.

5.1 End-to- End Runtimes

We focus on the most common OBE scenario of produc-
ing the whole heat map, i.e., G is automatically created
(“non-interactive” mode). We use an occlusion patch of
size 16 and stride 4. We compare two variants of KRYPTON:
KrypTON-Exact uses only incremental inference (Section
3), while KrypPTON-Approximate uses our approximate in-
ference optimizations too (Section 4). The main baseline
is Naive, the current dominant practice of performing full
inference for OBE with just naive batching of images. We
have another baseline for the GPU environment: Naive
Inc. Inference-Exact, which is a direct implementation of
Algorithm 1 in PyTorch/Python without using our GPU-
optimized CUDA kernel, which KrypTON uses (Section 3.4).
Note that Naive Inc. Inference-Exact is not applicable to the
CPU environment.

We set the user-given tuning parameters for adaptive drill-
down based on the semantics of each dataset’s prediction
task (Section 4.3). For OCT, since the region of interest is
likely to be small, we set rg,ij;—gown = 0.1 and target = 5.
For Chest X-Ray, the region of interest can be large; so, we set
Tdrill-down = 0.4 and target = 2. For ImageNet, which falls in
between, we use the KrypToN default values of 74,i11—down =
0.25 and target = 3. For all experiments 7 is auto-tuned with a
target SSIM of 0.9 (Section 4.3). Figure 10 presents the results.
Visual examples of images and the heat maps produced are
presented in the appendix.

Overall, we see KrypTON offers significant speedups across
the board on both GPU and CPU. The highest speedups are
reported by KrypTON-Approximate on OCT with VGG16:
16X on GPU and 34.5X on CPU. The highest speedups of
KrypToN-Exact are also on VGG16: 3.9X on GPU and 5.4X
on CPU. The speedups of KrRypTON-Exact are identical across
datasets for a given CNN, since it does not depend on the im-
age semantics, unlike KrypTON-Approximate due to its data-
dependent parameters. KRYPTON-Approximate reports the
highest speedups on OCT because our auto-tuning yielded
the lowest rg,i11-down, highest target speedup, and lowest ¢
on that dataset.

The speedups are lower with ResNet18 and Inception3
than VGG16 due to their architectural properties (kernel fil-
ter dimensions, stride, etc.) that make the projective field
grow faster. Moreover, Inception3 has a complex DAG archi-
tecture with more branches and depth-wise concatenation,
which limits GPU throughput for incremental inference. In
fact, KryproNn-Exact on GPU shows a minor slow-down
(0.7X) with Inception3. But KryPTON-Approximate still of-
fers speedups on GPU with Inception3 (up to 4.5X). We also
see that ResNet18 and VGG16 almost near their theoretical
speedups (Figure 3) but Inception3 does not. Note that the
theoretical speedup definition only counts FLOPs and does
not account for memory stalls.

Finally, the speedups of KrypTON are higher on CPU than
GPU. This is because CPU does not suffer much due to mem-
ory stalls during incremental inference. But the absolute run-
times are almost an order of magnitude higher on CPUs than
GPUs, which is to be expected. Overall, KRYPTON improves
the efficiency of OBE significantly for multiple datasets and
deep CNNs. We ran an additional experiment on the “in-
teractive” mode by reducing |G|. The speedups go down as
|G| goes down, which is expected because the benefits of
amortization are reduced. Due to space constraints, these
additional results are presented in the appendix.

5.2 Ablation Study

We now analyze the contributions of our 3 optimizations
individually. We compare the speedups of KrYPTON over
Naive (batched inference) on both CPU and GPU, termed

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

OCT/GPU

Chest X-IRay/GPU

Conference’17, July 2017, Washington, DC, USA

Imagel\llet/GPu

80 1 1 80 f 80 f
TI)\ 7O’L :FFIoJx | 70 7 —_
2 H
E 10 10 -
IS
>
m o
= s 0- e,
VGG16 ResNetl18 Inception3 VGG16 ResNet18 Inception3 VGG16 ResNetl18 Inception3
OCT/CPU Chest X-Ray/CPU ImageNet/CPU
» 1000 1000 1000 A
)
g 1.5X 1.5X 1.5X
% 500 500 500 A
@ 3.7X
.4X .4X .4X L.7X
0 34.5X ‘FMX 14.8X o 0 SexX ‘Fz.lx“}s 0 - 19.9X ‘Fz.lx 8.5X
VGG16 ResNet18 Inception3 VGG16 ResNet18 Inception3 VGG16 ResNet18 Inception3
BEE Naive HFE Naive Inc. Inference-Exact haVa Kr'ypton-Exact B Krypton-Approx.

Figure 10: End-to-end runtimes of KrRYPTON and baselines on all 3 datasets, 3 CNNs, and both GPU and CPU.

ResNet18

15{¢——e———o—— o

Inception3

2.0

15 T

IS
|
|
p-
|
|
|
|

//

Speedup

1.0

0.5 1

N}

0.5

4 8 16 32 4 8 16 32 4 8 16 32
Patch size
—8— Theoretical —— Empirical-CPU

)— Empirical-GPU —4— Empirical-GPU Naive

Figure 11: Speedups with only the incremental inference op-
timization (occlusion patch stride S = 4).

VGG16 ResNet18 Inception3

Speedup

0.8 1.0 0.4 0.6 0.8 1.0
Projective field threshold (t)
4~ Empirical-GPU ~ —4— Empirical-CPU

0.4

—8— Theoretical

Figure 12: Speedups with incremental inference combined
with only projective field thresholding.

Empirical-CPU and Empirical-GPU respectively, against the
theoretical speedups (explained in Sections 3 and 4).

Only Incremental Inference. We vary the patch size and
set the stride to 4. Figure 11 shows the results. As expected,
the speedups go down as the patch size increases. Empirical-
GPU Naive yields no speedups because it does not use
our GPU-optimized kernel, while Empirical-GPU does. But
Empirical-CPU is closer to theoretical speedup and almost
matches it on ResNet18. Thus, there is still some room
for improvement to improve the efficiency of incremental
inference in both environments.

(a) VGG16 ResNet18 Inception3

6 6

5 5

4 4

3¢ 3

2 2

01 02 03 04 05 01 02 03 04 05
Ydrill—-down
ResNet18 Inception3

4
8 10 12 14 16 8 10 12 14 16 8 10 12 14 16
Stage one stride (S)

—8— Theoretical ~&— Empirical-GPU —&— Empirical-CPU

Figure 13: Speedups with incremental inference combined
with adaptive drill-down. For (a), we set S; = 16. For (b), we
setrgriil_down = 0.25).

Projective Field Thresholding. We vary 7 from 1.0 (no
approximation) to 0.4. Adaptive drill-down is disabled but
note that this optimization builds on top of our incremen-
tal inference. The occlusion patch size is 16 and stride is 4.
Figure 12 shows the results. The speedups go up steadily as
7 drops for all 3 CNNs. Once again, Empirical-CPU nears
the theoretical speedups on ResNet18, but the gap between
Empirical-GPU and Empirical-CPU remains due to the dis-
proportionate impact of memory stalls on GPU. Overall, this
approximation offers some speedups in both environments,
but has a higher impact on CPU than GPU.

Adaptive Drill-Down. Finally we study the effects of adap-
tive drill-down (again, on top of incremental inference) and
disable projective field thresholding. The occlusion patch size
is 16. Stage two stride is S, = 4. First, we vary rq,iji-down,

Conference’17, July 2017, Washington, DC, USA

while fixing stage one stride (S; = 16). Figure 13 (a) shows
the results. Next, we vary Sy, while fixing ry,i11-down = 0.25.
Figure 13 (b) shows the results. As expected, the speedups
€O Up as Fgrill-down 0€s down or S; goes up, since fewer re-
inference queries arise in both cases. Empirical-CPU almost
matches the theoretical speedups across the board; in fact,
even Empirical-GPU almost matches theoretical speedups
on Inception3. Empirical-GPU flattens out at high S;, since
the number of re-inference queries drops, thus resulting in
diminishing returns for the benefits of batched execution
on GPU. Overall, this optimization has a major impact on
speeding up OBE for all CNNs in both environments.

Summary of Experiments. Overall, our empirical evalua-
tion shows that KrRYpTON is able to substantially accelerate
the OBE workload for explaining CNN predictions, up to 16X
speedups on GPU and 34.5X speedups on CPU. The speedups
of all 3 of our optimizations depend on the CNN’s architec-
tural properties. The speedups of our approximate inference
optimizations also depend on the dataset due to their tunable
parameters, which KRYPTON can tune automatically. Finally,
the speedups of Krypton are higher on CPU than GPU but
the absolute runtimes are much lower on GPU. Overall, all
of our optimizations in KrypPTON help reduce waiting times
for users and can save resource costs, since they only use
existing compute resources without forcing users to pay for
more resources (say, renting more GPUs in the cloud).

6 OTHER RELATED WORK

Query Optimization. Our work is inspired by the long
line of work on incremental view maintenance (IVM) in
databases [31-33], but this is the first work to use the IVM
lens for the occlusion-based CNN explanation workload. Our
novel algebraic IVM framework for CNN inference is closely
tied to the dataflow of CNN layers, which transform ten-
sors in non-trivial ways. Closely related to our work is the
IVM framework for linear algebra in [34]. They focus on
bulk matrix operators and incremental addition of rows to
the data matrix. We do not deal with bulk matrix operators
or additions of rows, but more fine-grained CNN inference
computations and in-place updates to image pixels due to
occlusions. Also closely related is the IVM framework for
distributed multi-dimensional array database queries in [35].
An interesting connection is that CNN layers with local spa-
tial context (Section 2.2) can be viewed as a variant of spatial
array join-aggregate queries. But our framework enables
end-to-end incremental inference for entire CNNs, not just
one-off spatial queries involving data materialization and
loading. Our focus is also on popular deep learning envi-
ronments, not array databases. Finally, we also go beyond

algebraic IVM ideas to further exploit CNN-specific seman-
tics and human perception properties in our problem setting.

Our work is also inspired by the multi-query optimiza-
tion (MQO) literature [19, 36]. But we focus on CNN infer-
ence, not relational queries. To the best of our knowledge,
ours is the first work to present an MQO-style optimiza-
tion combined with IVM for optimizing CNN inference for
occlusion-based explanations. Our approximate inference
optimizations are inspired by approximate query processing
(AQP) techniques [37, 38]. But unlike statistical approxima-
tions of aggregations over relations, our techniques are novel
CNN-specific and human perception-oriented heuristic ap-
proximations tailored to reducing the computational cost of
CNN inference for the OBE workload.

Multimedia DBMSs. There is much work in the database
and multimedia literatures on multimedia DBMSs [39, 40].
The main focus of such work is on retrieval, including
content-based image retrieval (CBIR) and video retrieval
using similarity search or indexes. Our work is orthogonal to
this body of work since we focus on accelerating CNN expla-
nations, not multimedia retrieval queries. CBinfer is a video
analytics tool for change-based approximate CNN inference
that can accelerate real-time object recognition in video [18].
Our work also deals with incremental and approximate
CNN inference, but our ideas exploit the specific properties
of the OBE workload, not general object recognition in
video. NoScope is a system to accelerate object detection in
video streams using model cascades [41]. Our focus is on
accelerating the OBE workload, not object recognition or
video. Overall, both these tools are orthogonal to our focus.

7 CONCLUSIONS AND FUTURE WORK

Deep CNNs are gaining widespread adoption for image pre-
diction tasks but their internal workings are unintuitive for
most users. Thus, occlusion-based explanations (OBE) have
become a popular mechanism for non-technical users to
understand CNN predictions. But OBE is highly compute-
intensive due to the large number of CNN inference requests
produced. In this work, we formalize OBE from a data man-
agement standpoint and introduce several novel database-
inspired optimization techniques to speed up OBE. Our tech-
niques span exact incremental inference and multi-query
optimization for CNN inference, as well as CNN-specific and
human perception-aware approximate inference. Overall,
our ideas yield even over an order of magnitude speedups
for OBE in both CPU and GPU environments. As for future
work, we plan to apply our ideas to other complex visual
recognition tasks and video analytics. It is also interesting
future work to generalize our framework to other CNN ex-
planation mechanisms and data types.

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

REFERENCES

[1] Olga Russakovsky et al. Imagenet large scale visual recognition chal-

[10

[11

[12

(13

(14

[16
[17

[18

[19

[20

(21

[22

]

—_

e s e

= =

]

]

lenge. International Journal of Computer Vision, 115(3):211-252, 2015.
Daniel S Kermany et al. Identifying medical diagnoses and treatable
diseases by image-based deep learning. Cell, 172(5):1122-1131, 2018.
Mohammad Tariqul Islam et al. Abnormality detection and localization
in chest x-rays using deep convolutional neural networks. arXiv
preprint arXiv:1705.09850, 2017.

Sharada P Mohanty et al. Using deep learning for image-based plant
disease detection. Frontiers in plant science, 7:1419, 2016.

Farhad Arbabzadah et al. Identifying individual facial expressions by
deconstructing a neural network. In German Conference on Pattern
Recognition, pages 344-354. Springer, 2016.

Yilun Wang and Michal Kosinski. Deep neural networks are more ac-
curate than humans at detecting sexual orientation from facial images.
Journal of personality and social psychology, 114(2):246, 2018.
Ai device for detecting diabetic retinopathy
swift fda approval. https://www.aao.org/headline/
first-ai-screen-diabetic-retinopathy-approved-by-f. Accessed
September 31, 2018.

Radiologists are often in short supply and overworked 4AS deep learn-
ing to the rescue. https://government.diginomica.com/2017/12/20/
radiologists-often-short-supply-overworked-deep-learning-rescue.
Accessed September 31, 2018.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i
trust you?: Explaining the predictions of any classifier. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135-1144. ACM, 2016.

Kyu-Hwan Jung et al. Deep learning for medical image analysis: Ap-
plications to computed tomography and magnetic resonance imaging.
Hanyang Medical Reviews, 37(2):61-70, 2017.

Paul Voigt and Axel Von dem Bussche. The EU General Data Protection
Regulation (GDPR), volume 18. Springer, 2017.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,
pages 818-833. Springer, 2014.

Nikhil Ketkar. Introduction to pytorch. In Deep Learning with Python,
pages 195-208. Springer, 2017.

Luisa M Zintgraf et al. Visualizing deep neural network decisions:
Prediction difference analysis. arXiv preprint arXiv:1702.04595, 2017.
Cafee model zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo.
Accessed September 31, 2018.

Models and examples built with tensorflow. https://github.com/
tensorflow/models. Accessed September 31, 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

Lukas Cavigelli, Philippe Degen, and Luca Benini. Cbinfer: Change-
based inference for convolutional neural networks on video data. In
Proceedings of the 11th International Conference on Distributed Smart
Cameras, pages 1-8. ACM, 2017.

Timos K Sellis. Multiple-query optimization. ACM Transactions on
Database Systems (TODS), 13(1):23-52, 1988.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.
Hung Le and Ali Borji. What are the receptive, effective receptive, and
projective fields of neurons in convolutional neural networks? arXiv
preprint arXiv:1705.07049, 2017.

Basic operations in a convolutional neural network - cse@iit delhi. http:
/[www.cse.iitd.ernet.in/~rijurekha/lectures/lecture-2.pptx. Accessed
September 31, 2018.

earns

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Conference’17, July 2017, Washington, DC, USA

Saskia EJ de Vries et al. The projective field of a retinal amacrine cell.
Journal of Neuroscience, 31(23):8595-8604, 2011.

Wenjie Luo et al. Understanding the effective receptive field in deep
convolutional neural networks. In Advances in neural information
processing systems, pages 4898-4906, 2016.

Zhou Wang et al. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing, 13(4):600—
612, 2004.

Jia Deng, Wei Dong, et al. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248-255. Ieee, 2009.

Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

Kaiming He et al. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770-778, 2016.

Christian Szegedy et al. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818-2826, 2016.

torch vison models. https://github.com/pytorch/vision/tree/master/
torchvision/models. Accessed September 31, 2018.

Rada Chirkova, Jun Yang, et al. Materialized views. Foundations and
Trends® in Databases, 4(4):295-405, 2012.

Ashish Gupta, Inderpal Singh Mumick, et al. Maintenance of materi-
alized views: Problems, techniques, and applications. IEEE Data Eng.
Bull, 18(2):3-18, 1995.

Alon Y Levy, Alberto O Mendelzon, and Yehoshua Sagiv. Answering
queries using views. In Proceedings of the fourteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
95-104. ACM, 1995.

Milos Nikolic, Mohammed ElSeidy, and Christoph Koch. Linview:
incremental view maintenance for complex analytical queries. In
Proceedings of the 2014 ACM SIGMOD international conference on Man-
agement of data, pages 253-264. ACM, 2014.

Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu, and Peter Nugent.
Incremental view maintenance over array data. In Proceedings of the
2017 ACM International Conference on Management of Data, pages
139-154. ACM, 2017.

Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei
Li. Scalable multi-query optimization for sparql. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages 666—-677. IEEE,
2012.

Yongjoo Park, Barzan Mozafari, Joseph Sorenson, and Junhao Wang.
Verdictdb: universalizing approximate query processing. In Proceedings
of the 2018 International Conference on Management of Data, pages
1461-1476. ACM, 2018.

Minos N Garofalakis and Phillip B Gibbons. Approximate query pro-
cessing: Taming the terabytes. In VLDB, pages 343-352, 2001.
Donald A Adjeroh and Kingsley C Nwosu. Multimedia database man-
agementﬁATrequirements and issues. IEEE multimedia, (3):24-33, 1997.
Oya Kalipsiz. Multimedia databases. In Information Visualization, 2000.
Proceedings. IEEE International Conference on, pages 111-115. IEEE,
2000.

Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Noscope: optimizing neural network queries over video at
scale. Proceedings of the VLDB Endowment, 10(11):1586-1597, 2017.
Steffen Eger. Restricted weighted integer compositions and extended
binomial coefficients. 7. Integer Seq, 16(13.1):3, 2013.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

https://www.aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f
https://www.aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f
https://government.diginomica.com/2017/12/20/radiologists-often-short-supply-overworked-deep-learning-rescue
https://government.diginomica.com/2017/12/20/radiologists-often-short-supply-overworked-deep-learning-rescue
https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/tensorflow/models
https://github.com/tensorflow/models
http://www.cse.iitd.ernet.in/~rijurekha/lectures/lecture-2.pptx
http://www.cse.iitd.ernet.in/~rijurekha/lectures/lecture-2.pptx
https://github.com/pytorch/vision/tree/master/torchvision/models
https://github.com/pytorch/vision/tree/master/torchvision/models

Conference’17, July 2017, Washington, DC, USA

VGG16 ResNet18 Inception3

| //Q—H 201 //.7 2.0
44 131 15{g—4—o—o—o
1.04

24 1.0
0.5

0.5

16 64 256 1024 4096 16 64 256 1024 4096 16 64 256 1024 4096
1GI

—8— Theoretical Empirical-GPU —4— Empirical-CPU

Figure 14: Interactive mode execution of incremental infer-
ence with Gs of different sizes

’ Krypton

———— FlowofData --ceeceean
Python > Invokes

0: Invoke the incremental inference transformation from Krypton.

1: Initialize the input tensors, kemel weights and output buffer in the GPU
memory space using PyTorch.

2: Invoke the Custom Kernel Interface (written in C) using Python foreign

oy
PyTorch
FFI Python
v2
function interface (FFI) support. Pass referecnes for the CNN transformation to

l Custom Kernel Interface l
& be used and memory references of input tensors, kernel weights and output
v3 buffer.

Custom Kernel Impl. 3: Forward the call to the Custom Kernel Implementation (written in CUDA).

(o]

¥5
¢
6 6: CUDNN reads the input from intermediate buffer and writes the transformed

7
uda
ry
output to the output buffer.
4>{ GPU Memor
Y 7: Optionally read the output to the main memory or pass the reference as the

input to the next transformation
Figure 15: Custom GPU Kernel integration architecture

4: Parallely copy the memory regions from the input tensor to an intermediate
memory buffer.

5: Delegate the invoking of CNN transformation to the cuDNN library.

[44] Tim Miller. Explanation in artificial intelligence: Insights from the
social sciences. arXiv preprint arXiv:1706.07269, 2017.

A INTERACTIVE MODE EXECUTION

We evaluate interactive-mode incremental inference execu-
tion (no approximate inference optimizations) with Gs of
different sizes. Similar to non-interactive mode experiments
presented in Section 5, all experiments are run in batched
mode with a batch size of 16 for CPU based experiments and
a batch size 128 for GPU based experiments. If the size of G
(formally |G|) or the remainder of G is smaller than the batch
size, that value is used as the batch size (e.g. |G| = 16 results
in a batch size of 16). Figure 14 presents the final results.

B GPU-OPTIMIZED KERNEL

We extend PyTorch by adding a custom GPU kernel which
optimizes the input preparation for incremental inference by
invoking parallel memory copy operations. This custom ker-
nel is integrated to PyTorch using Python foreign function
interface (FFI). Python FFI integrates with the Custom Ker-
nel Interface layer which intern invokes the Custom Kernel
Implementation. The high-level architecture of the Custom
Kernel integration is shown in Figure 15

e [T M T T T TTTT]

Filter
Positions

s | [| —] L1]
I
Output
Figure 16: Illustration of special cases for which actual out-
put size will be smaller than the value given by Equation (13).
(a) and (b) show cases where the filter stride is equal to the

filter size. (c) and (d) show situations where the position of
the modified patch affecting the size of the output patch.

C SPECIAL CASES FOR INCREMENTAL
INFERENCE

There are special cases under which the output patch size
can be smaller than the values calculated in Section 3.2. Con-
sider the simplified 1-D case shown in Figure 16 (a), where
the filter stride! (3) is the same as the filter size (3). In this
case, the size of the output update patch is one less than the
value calculated by Equation (14). But this is not the case for
the situation shown Figure 16 (b), which has the same input
patch size but placed at a different location. Another case
arises when the modified patch is placed at the edge of the
input, as shown in Figure 16 (c). In this case, it is impossible
for the filter to move freely through all positions, since it
hits the input boundary. However, it is not the case for the
modified patch shown in Figure 16 (d). In KrypTON, We do
not treat these cases separately but rather use the values cal-
culated by Equation (14) for the width dimension (similarly
for the height dimension), since they act as an upper bound.
In the case of a smaller output patch, KrypTON reads and
updates a slightly bigger patch to preserve uniformity. This
also requires updating the starting coordinates of the patch,
as shown in Equation (31). This sort of uniform treatment is
required for performing batched inference operations, which
gives significant speedups compared to per-image inference.

If x3 + WS > Wo :
r (D

o _ 0., 1 _ _wl. R _ _
Xp =Wo-Wgixp =Wr —Wpixp =Wr— Wy

D EFFECTIVE PROJECTIVE FIELD SIZE

We formalize the effective projective field growth for the one
dimensional scenario with n convolution layers (assuming
certain conditions). This proof is motivated by a similar proof
in [24] which characterizes the effective growth rate of the
receptive field in a CNN.

INote that stride is typically less than or equal to filter size.

Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

The input is u(t) where

wo={ s

and t =0,1,-1,2,-2,... indexes the input pixels.
Each layer has the same kernel v(t) of size k. The kernel
signal can be formally defined as
k-1
o(t) = Z w(m)d(t — m) (33)
m=0
where w(m) is the weight for the m*" pixel in the kernel.
Without loosing generality, we can assume the weights are
normalized, i.e. 3, w(w) = 1. The output signal of the n*"
layer o(t) is simply 0 = u * v * ... * v, convolving u with n
such vs. To compute the convolution, we can use the Dis-
crete Time Fourier Transform to convert the signals into the
Fourier domain, and obtain

U(w) = Z u(t)e 7t = 1, V(w)
(34
= Z v(t)e /@t = Zw(m)e_j“’t
t=—00 m=0

Applying the convolution theorem, we have the Fourier
transform of o is

F)=F (uxvx..*0)(w)=U(w).V(w)"

k-1 n
= (Z W(m)ej"”))

m=0

With inverse Fourier transform

o(t) = — f_ ”(Ew(m)e-fm)"efmdw (36)

2w J_, —

The space domain signal o(t) is given by the coefficients
of e77®!. These coefficients turn out to be well studied in
the combinatorics literature [42]. It can be shown that if
> mw(m) =1and w(m) > 0V m, then

o(t) = p(Sn = 1)
n
37
where S,, = ZX,- and p(X; = m) = w(m) (37)
i=1

From the central limit theorem, as n — oo, \/ﬁ(%Sn —

E[X]) ~ N(0,Var[X]) and S,, ~ N (nE[X]),nVar[X]). As
o(t) = p(S, =t), o(t) also has a Gaussian shape with

Conference’17, July 2017, Washington, DC, USA

This indicates that o(t) decays from the center of the pro-
jective field squared exponentially according to the Gaussian
distribution. As the rate of decay is related to the variance of
the Gaussian and assuming the size of the effective projective
field is one standard deviation, the size can be expressed as

\/Var[Sn] = \/nVar[Xi] = O0(Vn) (40)

On the other hand stacking more convolution layers would
grow the theoretical projective field linearly. But the effective
projective field size is shrinking at a rate of O(1/+/n).

E FINE-TUNING CNNS

For OCT and Chest X-Ray, the 3 ImageNet-trained CNNs
are fine-tuned by retraining the final Fully-Connected layer.
We use a train-validation-test split of 60-20-20 and the ex-
act numbers for each dataset are shown in Table 3. Cross-
entropy loss with L2 regularization is used as the loss func-
tion and Adam [43] is used as the optimizer. We tune learn-
ing rate n € [1072,107%,107°] and regularization parameter
A € [1072,107%,107°] using the validation set and train for
25 epochs. Table 4 shows the final train and test accuracies.

Train Validation Test

OCT 50,382 16,853 16, 857
Chest X-Ray 3,463 1,237 1,156
Table 3: Train-validation-test split size for each dataset.

Model Accuracy(%) | Hyperparams.

Train | Test | 5 A

VGG16 79 82 1074 | 1074

OCT ResNet18 | 79 82 1072]107%

Inception3 | 71 81 [102[10°°

VGG16 75 76 1074 | 1074

Chest X-Ray | ResNet18 | 78 76 [1071 107°

Inception3 | 74 76 | 1071072

Table 4: Train and test accuracies after fine-tuning,.

F DEEP CNN EXPLAINABILITY

Various approaches used to explain CNN predictions can
be broadly divided into two categories, gradient-based and
perturbation based approaches. Gradient-based approaches
generate a sensitivity heat map by computing the partial
derivatives of model output with respect to every input pixel
via backpropagation. In perturbation based approaches the
output of the model is observed by modifying regions on
the input image and thereby identify the sensitive regions.
Despite being time-consuming, in most real world use cases
such as in medical imaging, practitioners tend to use oc-
clusion experiments, a perturbation based approach, as the

Conference’17, July 2017, Washington, DC, USA

Projective field threshold |
10 0.9 0.8 0.7 0.6 [0.5 0.4 03 |

OCT Image/DME

e + Adaptive drill-down

Projective field threshold I
0.7 l 0.6 I 05 I 0.4 | 0.3 |

e
]Ai\"‘

Chest X-Ray
Image/VIRAL "‘
(a) Incremental Inference

s w!u. e e o -w T
i f2 _‘ ; m}. e e ! “
t‘b- *'5- !:‘5- H&ﬂ H O ”

(b) Incremental Inference + Adaptive drill-down

835338

'5-

Projective field threshold
0.7] 0.6 l 0.5 I 0.4 [0.3

ImageNet
Imaae/OBOE
150

Predicted Probability

+ Adaptive drill-down

Figure 17: Occlusion heat maps for sample images (CNN model = VGG16, occlusion patch size = 16, patch color = black, occlu-
sion patch stride (S or S) = 4. For OCT 14,11 down = 0.1 and target = 5. For Chest X-Ray r4,ii] down = 0.4 and target = 2. For
ImageNet 14,11 down = 0.25 and target = 3).

preferred approach for explanations as they produce high
quality fine grained sensitivity heat maps using a process
which is very intuitive to the human observer [10, 12, 44].

G VISUAL EXAMPLES

Figure 17 presents occlusion heat maps for a sample image
from each dataset with (a) incremental inference for different
projective field threshold values and (b) incremental inference
with adaptive drill-down for different projective field threshold
values. The predicted class label for OCT, Chest X-Ray, and
ImageNet are DME, VIRAL, and OBOE respectively.

	Abstract
	1 Introduction
	2 Setup and Preliminaries
	2.1 Problem Statement and Assumptions
	2.2 Dataflow of CNN Layers

	3 Incremental Inference Optimizations
	3.1 Expected Speedups
	3.2 Single Layer Incremental Inference
	3.3 Propagating Updates across Layers
	3.4 Multi-Query Incremental Inference
	3.5 Putting it All Together

	4 Approximate Inference Optimizations
	4.1 Projective Field Thresholding
	4.2 Adaptive Drill-Down
	4.3 Automated Parameter Tuning

	5 Experimental Evaluation
	5.1 End-to- End Runtimes
	5.2 Ablation Study

	6 Other Related Work
	7 Conclusions And Future Work
	References
	A Interactive Mode Execution
	B GPU-Optimized Kernel
	C Special Cases for Incremental Inference
	D Effective Projective Field Size
	E Fine-tuning CNNs
	F Deep CNN Explainability
	G Visual Examples

