
Materialization		Trade-offs	for	Feature	Transfer	from
Deep	CNNs	for	Multimodal	Data	Analytics

Supun	Nakandala	and	Arun	Kumar
University	of	California,	San	Diego

{snakanda,	 arunkk}@eng.ucsd.edu

1.	Summary

Convolutional+Pooling+ReLU Layers Fully Connected Layers Output

Low-level Features Mid-level Features High-level Features

Input

Image features from a specified layer

Structured Features Multimodal Feature Set
Concatenate

(A) CNN Inference

Brand Tags Price Brand Tags Price Image Features

Downstream ML Model(B) CNN Feature Transfer for Multimodal Analytics

3.	Problem	Formalization

5.	System	Optimizations

TensorFlowHDFS/S3

Spark Worker

Mllib/ML DataFrame/DataSet
API

Spark Driver Program

Pre-trained
ConvNets

Vista

Declarative Interface

Query
Optimizer

4.	System	Overview

(1)	Logical	Plan	Decisions

(2)	System	Configuration	Choices	

6.	Snapshot	of	Results

Execution/Storage Moving Boundry

Spark Executor
Native Memory

Spark
Reserved
Memory

User Memory Execution
Memory

Storage
Memory

Disk
Memory

memsys

memrsv
memheap

memsp_rsv memheap-memsp_rsv

(memheap-memsp_rsv) * rsp_memory

System
Reserved
Memory

(memheap-memsp_rsv) * rsp_memory * rsp_memory_storage

Spark Executor Heap Memory

(3)	Physical	Plan	Decisions

∀	𝑙	 ∈ 𝐿 ∶

𝑇()*+,- 𝐼𝐷, 𝑔- 𝑓-2 𝐼 ← Apply	𝑔-	 ∘ 		 𝑓9- 	to		𝑇)*+
𝑇(- 𝐼𝐷,𝑋-(← 𝑇=>? ⋈ 	 𝑇()*+,-

Train	𝑀	on	𝑇(- 	with		𝑋-
, 	≡ [𝑋, 𝑓-2 𝐼]

𝐿 List of	layers	interested	in	exploring

𝑇=>?(𝐼𝐷,𝑋) Structured data	table

𝑇)*+(𝐼𝐷, 𝐼) Image data	table

𝑓9- CNN	inference	operator	to	extract	features	for	layer	𝑙 starting	from	images
𝑔-	 CNN	feature	flattening	operator

𝑓9-N	→-P Partial	CNN	inference	operator	for	extracting	CNN	features for	layer	𝑙2
starting	from	layer	𝑙1 CNN	features.

Vista is implemented as a library on top of the Spark-TensorFlow combine.

A Current	dominant	approach	of performing	CNN	inference.
B Performing	the	CNN inference	after	the	join	can	reduce	the	join	

overhead.
C Bulk Inference
D Bulk	with	CNN	inference	 is	performed	after	the	join.
E Staged	Inference

The new Bulk and Staged inference plans avoid redundant partial CNN inference;
Stagedwith join pushed below also has lower memory pressure

Memory	management	 scheme	 for	Spark

Mismanaged memory can cause system crashes and excessive disk spills that raise runtimes
in Spark.

Vista uses information about CNN operator characteristics such as input/output
dimensions, runtime memory footprints and estimates of intermediate data sizes
to pick system configuration values.

Project	web	page	
with	tech	 report,	
code,	 and	data:

Deep	CNNs	achieve	near-human	accuracy	in	image	understanding	tasks.

The	key	technical	reason	for	deep	CNNs’	success	is	how	they	extract	a	hierarchy		of	relevant	
features	from	images.

Observation:

2.	Background	and	Example

Example Use Case: A data scientist working for an online fashion retailer wants to build a
product recommendation model. She can now use product images which caries important
information such as customer’s stylistic preferences.

Has to explore multiple layers. Will write activations of each layer into files, join with
structured features, and train the downstream ML model for each layer, e.g., using
TensorFlow for CNN inference and Spark for downstreamML model training.

CNN features can be big (orders of magnitude larger than raw images). Can cause efficiency
issues due to disk spills or even system crashes!

Iteratively performing CNN inference for each layer is inefficient. Repeated computations!

Two	tables	𝑇=>?(𝐼𝐷,𝑋) and	𝑇)*+(𝐼𝐷, 𝐼),	𝑋	𝜖	ℝU= is	the	structured	feature	vector,	and	
𝐼 are	raw	images	(say,	as	files	on	HDFS).

Inputs:

A	CNN	𝑓 with	𝑛- layers,	a	set	of	layer	indices	𝐿	 ⊂ [𝑛-] specific	to	𝑓 that	are	of	interest	
for	transfer	learning.

A	downstream	ML	algorithm	𝑀 (e.g	logistic	regression)

A	set	of	system	resources	𝑅 (number	of	cores,	system	memory,	and	number	of	nodes)

Target: Train	𝑀 for	each	of	the	|𝐿| feature	vectors	obtained	by	concatenating	𝑋 with	the	
respective	feature	layers	obtained	by	partial	CNN	inference.

More	Formally:

Declarative API to specify the feature transfer workload.

Optimizer picks an optimal plan.

Has to pick four configuration values:
1. CPUs per executor
2. JVM heap size
3. User memory size
4. Number of data partitions

Pick broadcast join or shuffle join? Depends on the size of 𝑇=>?
Store intermediate data in serialized form? Depends on chance of disk spills

Vista	Optimizer
We define simple optimization problem for minimizing runtime subject to a suite of memory
constraints to ensure Spark will not crash

Datasets Foods Amazon
Description Food nutrition	facts	

(e.g.	sugar,	proteins)
Product	information	
(e.g.	price, brand)

structured
features

130 200

Image Of the	food	item Of	the	product
Target Is	food	plant-based? Is product	popular?

Vista improves reliability of deep CNN feature transfer
workload and reduces runtimes up to 90% at scale

Naïve 1, Naïve 5: The current dominant
approach. Corresponds to logical plan A.

Pre-Mat,	Bulk:	Advanced	baselines.

Optimizer: Plan picked by Vista optimizer.

Setup: Using 8 node Spark (2.2.0) cluster (8 x 2.00 GHz CPUs, 32 GB RAM, and 300 GB HDD
per node) and TensorFlow (1.3.0). DownstreamML: logistic regression for 10 iterations.

In many applications powered primarily by structured
features, useful image data ignored or underutilized

Opportunity: Feature transfer from pre-trained deep CNNs is a powerful
way to cheaply exploit image data

Problem:
Effective feature transfer requires exploratory comparison
of different layers; requires managing feature
materialization at scale

Our Approach:
Elevate the feature transfer workload to a declarative level; automate
optimization of feature materialization trade-offs at scale to improve
efficiency and reliability

Results: Our	system,	Vista,	improves	reliability	and	reduces	runtimes	by	up	to	90%	

In brief:

In brief:

Takeaway:
http://adalabucsd.github.io/vista.html

Line search algorithm to set all free parameters and execution plan decisions

