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Growth of unstructured data

Data growth mainly driven by
unstructured data
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Opportunity: CNN

Deep Convolution Neural Networks (CNN) provide opportunities to
holistically integrate image data with analytics pipelines.
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CNN: Hierarchical Feature Extractors

From a few t? >100 layers
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CNN: Training Limitations

Lot of labelled training data Lot of compute power Time consuming

“Dark art” of
hyperparameter
tuning
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Transfer Learning: CNNs for the other 90%

From a few to >100 layers Pre-trained CNN
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Transfer Learning: CNNs for the other 90%
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Transfer Learning: CNNs for the other 90%

From a few to >100 layers Pre-trained CNN

WhICh layer will result in the best
accuracy?
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Transfer Learning: Bottleneck

Image Data
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Transfer Learning: Bottleneck
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Transfer Learning: Bottleneck

From a few t? >100 layers
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Transfer Learning: Current Practice

« . . .
'ﬁ? From a few to >100 layers + Efficient CNN inference

Tensor - Doesn’t support scalable

processing

Feature Maps

Pooling Fully-cc;unectled
+ (Subsampling)  + ¢ifiner Product) + Fault tolerant
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Image Data + Scalable processing

- No support for CNNs
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Problems with Current Practice

Usability: Manual management of CNN features.

Efficiency: From image inference for all feature layers has

From a few to >100 layers

Lk}

Pooling |1 IZ Fully-cJBectIed

(Subsampling) Ax (Inner Product)

computational redundancies.

Reliability: CNN layers are big, requires careful memory configuration.

Disk spills
System crashes!
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Experimental Evaluation
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Vista: Overview

Vista is a declarative system for scalable feature transfer from
deep CNNs for multimodal analytics.

Vista takes in: _

Input Image : —~ Yo
Brand | Tags | Price K3 F % %%O%;% T }z Y
B 0 i odling LR b R : / """""""""""
Structured Data  Image Data  Pre-trained CNN and Iayers of ML model
Interest

Vista optimizes the CNN feature transfer workload and reliably
runs it.
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Vista: Architecture

|

Declarative API

Pre-trained
CNNs

Optimizer

Logical Plan Optimizations

Physical Plan Optimizations

System Configuration Optimizations

Benefit: Usability

Benefit: Efficiency
and Reliability

Benefit: Efficiency,
Scalability, and Fault
Tolerance
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Our System Vista
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Current Practice: Repeated Inference

ML Model Lazy Materialization

I Problem: Repeated inferences
Multimodal Features {S, 11}
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Extract all layers in one go

ML Model ML Model ML Modell  Eager Materialization
, (s.|12} , Problem: High Memory
Multimodal Features {S, 11, 12, I3}| < Foc.)tprln.t ,
i - disk spills/cache misses
- system crashes!
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Structured Data {S} Image Features {I1, 12, 13}




Our Novel Plan: Staged CNN Inference

ML Model

] Partial CNN Operator

ML Model

Multimodal Features {S, 11}

Multimodal Features
{S, 12}

Staged Materialization

Structured Data {S} Image Features {I1}
o ()5 T
i (subsamping) | 4 19" gf‘é?f@‘i

Benefits: No redundant
computations, minimum
memory footprint




Our Novel Plan: Staged CNN Inference

ML Model

|

Multimodal Features {S, 11}

!

X

ML Model

Partial CNN Operator

Multimodal Features
{S, 12}

/ \ 284 KB Staged Materialization

Structured Data {S} Image Features {I1} Benefits: No redundant

computations, minimum

& [ T -
* ...... e memory footprint
14 KB

Images Problem: High join overhead




Our Novel Plan: Staged CNN Inference - Reordered

ML Model

Partial CNN Operator

ML Model

Multimodal Features {S, 11}

******* S Multimoda

T

Image Features {I1}

Features

{S, 12}

Staged Materialization

Benefits: No redundant
computations, minimum

memory footprint

Structured Data {S} Images
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Vista: Physical Plan Optimizations

Join Operator

Options: Broadcast vs Shuffle join
Trade-Offs: Memory footprint vs Network cost

Storage Format

Options: Compressed vs Uncompressed
Trade-Offs: Memory footprint vs Compute cost

Benefit: Vista automatically picks the physical plan choices.
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Our System Vista
System Optimizations

System Configuration Optimizations



Vista: System Configuration Optimizations

Memory allocation
Query parallelism

Data partition size



Memory Allocation

Challenge: Default configurations won’t work
CNN features are big
Non trivial CNN model inference memory

Query Processing

UDF Execution  e.g. join processing Store intermediate data CNN modellfootprints
S Reserved User Core In-Memory CNN Inference
Memory Memory Memory Storage Memory

Benefit: Vista frees the data scientist from manual memory
and system configuration tuning.




Query Parallelism and Data Partition Size

Query Parallelism

Increase Query Parallelism = Increase CNN Inference
Memory = Less Storage Memory

Benefit: Vista sets Query Parallelism to improve utilization
and reduce disk spills.

Data Partition Size
Too big = System Crash, Too small = High overhead

Benefit: Vista sets optimal data partition size to reduce
overheads and avoid crashes.




Example and Motivations
Our System Vista

Experimental Evaluation
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Experimental Setup

il ©

8 worker nodes
and 1 master node

ST

Version 2.2.0 Tensor

Version 1.3.
Runs in standalone mode ersion 1.3.0

Ubuntu 16.04 LTS
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Dataset & Workloads

dMaZoN product reviews dataset

Number of Records 200,000
Number of Structured Features 200 — price, category embedding, review

embedding

Image Image of each productitem

Target Predict each productis popularor not
Spark

Pre-trained CNNs: ML model: MLIib
% %%oio\ The Machine Learning Library

lexNet — Last 4 layers Logistic Regression for 10 iterations

VGG16 — Last 3 layers
ResNet50 — Last 5 layers
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End-to-end reliability and efficiency

Spark-TF/Amazon

400
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E 250 System crashes due
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AlexNet ResNet
M lazy-1 MW lazy-5 W Lazy-7 Eager B Vista X System crashes

Experimental resultsfor other data systems, datasets, and drill-down experiments can be found in our paper.




Summary of Vista
Declarative system for scalable feature transfer from
CNNs.

Performs DBMS inspired logical plan, physical plan, and
system configuration optimizations.

Improves efficiency by up to 90% and avoids unexpected
system crashes.

Thank You!
Project Webpage: https://adalabucsd.github.io/vista.html



