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Deep	Convolution	Neural	Networks	(CNN)	provide	opportunities	to	
holistically	integrate	image	data	with	analytics	pipelines.

Opportunity:	CNN
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CNN:	Hierarchical	Feature	Extractors

Low	level	features Mid	level	features High	 level	features



CNN:	Training	Limitations

Lot	of	labelled	training	data Lot	of	compute	power Time	consuming

“Dark	art”	of	
hyperparameter	
tuning
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“Transfer	Learning”	mitigates
these	limitations
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8

Example	and	Motivations

Our	System	Vista

Experimental	Evaluation
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Pre-trained	CNN

Which	layer	will	result	in	the	best	
accuracy?
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Brand Tags Price

Transfer	Learning:	Current	Practice

Structured	Data

Image	Data

Train	ML	
Model Evaluate
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+ Efficient	CNN	inference
- Doesn’t	support	scalable			
processing

+ Scalable	processing
+ Fault	tolerant

- No	support	for	CNNs



Problems	with	Current	Practice

Usability: Manual	management	of	CNN	features.

Efficiency: From	image	inference	for	all	feature	layers	has	

computational	redundancies.

Reliability: CNN	layers	are	big,	requires	careful	memory	configuration.
Disk	spills
System	crashes!
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Vista:	Overview
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Vista	is	a	declarative	system	for	scalable	feature	transfer	from
deep	CNNs	for	multimodal	analytics.

Vista	takes	in:
Brand Tags Price

Structured	Data Image	Data
l1 l2 l3

Pre-trained	CNN	and	layers	of
interest

ML	model

Vista	optimizes	the	CNN	feature	transfer	workload	and	reliably
runs	it.
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Vista:	Architecture

Declarative	API Benefit:	Usability

Optimizer

Logical	Plan	Optimizations

Physical	Plan	Optimizations

System	Configuration	 Optimizations

Benefit:	Efficiency	
and	Reliability

Pre-trained
CNNs

Benefit: Efficiency,	
Scalability,	and	Fault	
Tolerance 20
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Our	System	Vista
System	Optimizations

Logical	Plan	Optimizations
Physical	Plan	Optimizations
System	Configuration	Optimizations



Current	Practice:	Repeated	Inference

22

Structured	Data	{S}

Images
l1 l2 l3

Image	Features	{l1}

⋈

Multimodal	Features	{S,	l1}

ML	Model Lazy	Materialization
Problem:	Repeated	inferences



Extract	all	layers	in	one	go
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Structured	Data	{S}

Images
l1 l2 l3

Image	Features	{l1,	l2,	l3}

⋈

Multimodal	Features	{S,	l1,	l2,	l3}

Eager	MaterializationML	Model

{S,	l1}

ML	Model

{S,	l2}

ML	Model

{S,	l3} Problem:	High	Memory	
Footprint
- disk	spills/cache	misses
- system	crashes!



Our	Novel	Plan:	Staged	CNN	Inference
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Structured	Data	{S}

Images
l1 l2 l3

Image	Features	{l1}
Staged	Materialization

ML	Model

Benefits:	No	redundant	
computations,	minimum	
memory	footprint

⋈

Multimodal	Features	{S,	l1} Multimodal	Features	
{S,	l2}

ML	Model

l1 l2 l3

Partial	CNN	Operator



Our	Novel	Plan:	Staged	CNN	Inference
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Structured	Data	{S}

Images
l1 l2 l3

Image	Features	{l1}
Staged	Materialization

ML	Model

Benefits:	No	redundant	
computations,	minimum	
memory	footprint

⋈

Multimodal	Features	{S,	l1} Multimodal	Features	
{S,	l2}

ML	Model

l1 l2 l3

Partial	CNN	Operator

Problem:	High	join	overhead
14	KB

784	KB



Our	Novel	Plan:	Staged	CNN	Inference	- Reordered
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Images

l1 l2 l3

Image	Features	{l1}
Staged	Materialization

ML	Model

Benefits:	No	redundant	
computations,	minimum	
memory	footprint

Multimodal	Features	{S,	l1}

Structured	Data	{S}

⋈

Multimodal	Features	
{S,	l2}

ML	Model

l1 l2 l3

Partial	CNN	Operator

Problem:	High	join	overhead
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Our	System	Vista
System	Optimizations

Logical	Plan	Optimizations
Physical	Plan	Optimizations
System	Configuration	Optimizations



Vista:	Physical	Plan	Optimizations

Benefit:	Vista	automatically	picks	the	physical	plan	choices.
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Join	Operator
Options:	Broadcast	vs	Shuffle	join
Trade-Offs:	Memory	footprint	vs	Network	cost

Storage	Format
Options:	Compressed	vs	Uncompressed
Trade-Offs:	Memory	footprint	vs	Compute	cost
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Our	System	Vista
System	Optimizations

Logical	Plan	Optimizations
Physical	Plan	Optimizations
System	Configuration	Optimizations



Vista:	System	Configuration	Optimizations
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Memory	allocation

Query	parallelism

Data	partition	size



Memory	Allocation
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Challenge:	Default	configurations	won’t	work
CNN	features	are	big
Non	trivial	CNN	model	inference	memory	

In-Memory	
Storage

Core	
Memory

User	
Memory

OS		Reserved
Memory

CNN	Inference
Memory

UDF	Execution
Query	Processing
e.g.	join	processing Store	intermediate	data CNN	model	 footprints

Benefit:	Vista	frees	the	data	scientist	from	manual	memory	
and	system	configuration	tuning.



Query	Parallelism	and	Data	Partition	Size
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Benefit:	Vista	sets		Query	Parallelism	to	improve	utilization	
and	reduce	disk	spills.

Query	Parallelism
Increase	Query	Parallelism	à Increase	CNN	Inference	
Memory	à Less	Storage	Memory

Data	Partition	Size
Too	big	à System	Crash,	Too	small	à High	overhead

Benefit:	Vista	sets		optimal	data	partition	size	to	reduce	
overheads	and	avoid	crashes.
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Example	and	Motivations

Our	System	Vista

Experimental	Evaluation



Experimental	Setup

8	worker	nodes	
and	1	master	node	

32	GB	RAM

Intel	Xeon	@	2.00GHz	CPU	with	8	cores

300	GB	HDD

Version	2.2.0
Runs	in	standalone	mode Version	1.3.0
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Dataset	&	Workloads
Amazon	product	reviews	dataset

ML	model:
Logistic	Regression	for	10	iterations
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Number	of	Records 200,000
Number	of	Structured	Features 200	– price,	category	embedding,	review	

embedding
Image Image	of	each	product	item
Target Predict	each	product	is	popular	or	not

Pre-trained	CNNs:
AlexNet	– Last	4	layers
VGG16	– Last	3	layers
ResNet50	– Last	5	layers



End-to-end	reliability	and	efficiency
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Experimental	results	for	other	data	systems,	datasets,	and	drill-down	experiments	can	be	found	in	our	paper.

System	crashes	due
to	mismanaged
memory
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Summary	of	Vista

Declarative	system	for	scalable	feature	transfer	from	
CNNs.

Thank	You!
Project	Webpage:	https://adalabucsd.github.io/vista.html

Performs	DBMS	inspired	logical	plan,	physical	plan,	and	
system	configuration	optimizations.

Improves	efficiency	by	up	to	90%	and	avoids	unexpected	
system	crashes.
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