
Better Data Discoverability in Science Gateways

Supun Nakandala, Sudhakar Pamidighantam, Suresh Marru, Marlon Pierce
Science Gateways Research Center, Indiana University

{snakanda, pamidigs, smarru, marpierc}@.iu.edu

ABSTRACT
Science gateways primarily focused on remote job execution
management generate domain specific output data mainly
readable by application specific parsers and post process-
ing utilities. For example, computational chemistry data
outputs encode molecule information, convergence of the
simulation and energy values. Such domain-specific infor-
mation is non-trivial to search in a generic fashion. It is
thus desirable to add a wide range of application-specific
and user-specific post-processing features that may include
remote executions of scripts and smaller applications that
don’t require scheduling on clusters. It is also desirable
to support integrations with searching, indexing, and gen-
eral purpose data analysis and mining tools provided by the
Apache “big data” software stack. As gateways become ten-
ants to general purpose platform services, providing a gen-
eral purpose infrastructure that enables these application
specific post-processing steps is an interesting architectural
challenge. Furthermore, it is desirable to share results from
the post-processing and indexing. In this paper, we discuss
how we have incorporated a new automated application out-
put indexing system for the SEAGrid Science Gateway using
Apache Airavata that will parse and index generated output
for easy querying. We also examine data sharing and auto-
mated data publication so that another user can reuse the
results without running an already executed experiment and
hence reduce resource utilization.

1. INTRODUCTION
SEAGrid Science Gateway [4] and its predecessor, Grid-

Chem Science Gateway, have been serving computational
chemistry communities and related domains for more than
10 years. Together, SEAGrid and GridChem have gener-
ated more than 8TB of application specific archived out-
puts. As the execution exceeds hundreds of experiments
by a given users, managing and browsing through them be-
comes non-trivial. The search capabilities are limited by
user provided limited metadata, but if additional metadata
can be extracted from application outputs, users can find
value in their previous runs and also share them with theirs
in a meaningful way. Efforts such as [2],[1] are highlighting
the importance of such extracted metadata. Without bur-
dening the users, we have added new capabilities ensuring:

• Metadata extraction be done automatically (so that
a user is not required to manually feed them to the
system).

• Users search capabilities to include both content of the
data in addition to user provided experiment name and
descriptions.

Considering these features, we have developed an auto-
mated metadata extraction system that can extract meta-
data from the data by running sets of configurable parsers.
In our system, we have focused on parsing output data gen-
erated from several computational chemistry applications
including Gaussian, Molpro, NWChem, and Gamess. How-
ever, the concepts and design of this system can be widely
applied to any type of application and data. In the follow-
ing sections we will describe the high level design of the new
system and details on the implementation.

2. DESIGN & IMPLEMENTATION
The SEAGrid Science Gateway uses the Apache Airavata

science gateway framework [3] for its remote job execution
and management tasks and WSO2 Identity Server for user
identity management. Airavata builds on the component
based microservices architecture, and hence it is easy to add
new functional components that relies and builds on top of
the existing components. In Figure 1 we have shown how the
new parsers and search functionality is seamlessly integrated
within existing Apache Airavata framework.

Within SEAGrid, the user provided input data and the
corresponding generated output data archived within the
SEAGrid Data Store. When a user runs an experiment,
the input files are staged into a folder in this server, which
will be then copied to the remote computational resource
by Airavata. After the remote application completes the
generated output, data are again moved back to this data
store by Airavata. Status information about different states
of experiment execution can be obtained by subscribing to
the AMQP based Airavata message bus. The message bus is
the point of extension that we use to enable post-processing
pipelines.

We have deployed a message listener daemon, the Aira-
vata Message Listener in Figure 1, which is subscribed to all
experiment status change messages in the SEAGrid Gate-
way. Once an experiment completion message is received it
will again query Airavata’s registry component to get more
details about the completed experiment such as application
type and output data path, and generate a data parsing work
object. The work object is then added to a work queue. At
the other end of the queue, worker nodes are deployed on
multiple machines that have local access to the gateway data
store through NFS mounting. Worker nodes parse the out-
put data and extract metadata, as described below. The
extracted metadata is then formatted into a JSON format
and indexed into a MongoDB database. We have also devel-
oped a web-based data portal which enables users to query
on data based on the extracted attributes. For example
in SEAGrid case users can now search based on molecular
structures, energy values, and several other extracted do-
main specific attributes. In the default configuration only



SEAGrid Gateway
 Data Store

Message 
Bus

Airavata

Work Queue

Airavata Listener
Status Change

Notifications

Data Parsing
Work

Index Data

Worker Worker

NFS/Local Mount

Data Catalog Portal

Indexed Data Catalog
 (Uses MongoDB 

Database)

Authentication/
Authorization

Query Indexed
 Data

Identity Server

Retrieve Metadata
for Experiment

Registry

Open Babel CCLIB
Custom
Python

1

2

3

4

5

Dockerized
Parser Containers

Figure 1: SEAGrid data cataloging system

the owner of the data has access to the extracted metadata,
but the owner can make the data publicly shared so that
others can have access.

A particular parsing and extraction pipeline is provided
to workers by configuring a set of parsers. For each appli-
cation, multiple parsers can be configured. Extracted meta-
data from each of the parser is then merged into one JSON
document and indexed in MongoDB. Parsers are container-
ized into docker containers and can contain any type of pars-
ing logic written in any language. For example, in SEAGrid,
we mainly use python-based parsers that also rely on system-
installed libraries such as Open Babel and CCLib (Computa-
tional Chemistry Library). The advantage of containerizing
the parsing logic is that the containers can be easily executed
on any machine without installing complicated and incom-
patible libraries on the host server. Another advantage of
dockerizing the parser logic is that whenever changes need
to be done for the existing parsers, those changes can be
centrally published using DockerHub, and all workers will
thereafter use the updated docker images.

During our initial development, we noticed that it is hard
to provide a fixed schema for the metadata model, as differ-
ent parsers may extract different metadata values. Coming
up of with a fixed set of metadata attributes prevents the
extensibility of existing parsers and addition of new parsers.
Therefore we format the extracted metadata from parsers
using a key-value format into one aggregated JSON docu-
ment. This schema-less approach enables easy extensibility
of the data cataloging system.

It is possible for the parser logic to change in existing
parsers or for new parsers to be added; this can produce
inconsistencies in the metadata based on the version of the
post-processing pipeline. Our current solution is to rerun
the parsers on the already catalogued data. This can be
done by replacing the Airavata Message Listener component
combined with an Airavata Registry scanner or a file system
scanner that will generates data parsing work units and add
them to the worker queue. This listener creates“new”events
on the Airavata message bus from the archived data.

3. FUTURE WORK
The data parsing (or post processing) tasks for SEAGrid

described here are done in a prototype environment external
to Airavata’s main job management features. We are inte-
grating these extensions into the Airavata core so that it can
also be used to execute these data parsing jobs. In this case
jobs will be self containerized docker images similar to the
current implementation. The advantage of using Airavata
instead of custom built data parsing infrastructure is that
we can leverage the scalability and fault tolerance aspects
that are already available in Airavata. We also will increase
the number of parsers available in the system so that out-
puts from many applications can be parsed. Our goal is to
make the features described here into a first class capabil-
ity within Airavata and expose these features to additional
gateways. Finally, as we move these features into produc-
tion for SEAGrid, we will merge the currently separate data
portal with the SEAGrid main portal as a top level gateway
functionality.

Another aspect that we are examining is the integration
of a data publishing platforms to SEAGrid Science Gate-
way. There is an increasing trend among academic publish-
ers to require data to be published (accessible) in addition
to methodologies and results used in the scientific process.
There are several such existing platforms that allows users to
upload data and publish them; after publishing, a persistent
document object identifier (DOI) is returned which can be
used to cite/locate the data. What we are trying to achieve
in SEAGrid is to make the data publishing step an integral
part of the gateway functionality such that it seamlessly in-
tegrates with other gateway operations. In order to achieve
this, we are developing connectors to existing data publish-
ing platforms from the SEAGrid gateway portal. Finally,
as we move these features into production for SEAGrid, we
will merge the current proof of concept data portal with the
SEAGrid portal as a top level gateway functionality.

4. ACKNOWLEDGEMENTS
This work was partially supported by NSF ACI award

#1339774, “Collaborative Research: SI2-SSI: Open Gate-
way Computing Environments Science Gateways Platform
as a Service (OGCE SciGaP)”.

References
[1] Sarah Allanson Cashman et al. Mining available data

from the united states environmental protection agency
to support rapid life cycle inventory modeling of chemical
manufacturing. Environmental Science & Technology,
2016.

[2] Matthew J. Harvey et al. Digital data repositories in
chemistry and their integration with journals and elec-
tronic notebooks. Journal of Chemical Information and
Modeling, 54(10):2627–2635, 2014.

[3] Suresh Marru et al. Apache airavata as a laboratory:
architecture and case study for component-based gate-
way middleware. In Proceedings of the 1st Workshop
on The Science of Cyberinfrastructure: Research, Ex-
perience, Applications and Models, pages 19–26. ACM,
2015.

[4] Sudhakar Pamidighantam et al. Community science ex-
emplars in seagrid science gateway: Apache airavata
based implementation of advanced infrastructure. Pro-
cedia Computer Science, 80:1927–1939, 2016.


