
Apache Airavata Security Manager: Authentication
and Authorization Implementations for a

Multi-Tenant eScience Framework
Supun Nakandala

Research Technologies, UITS
Indiana University, USA

snakanda@iu.edu

Hasini Gunasinghe
Computer Science Department

Purdue University, USA
huralai@purdue.edu

Suresh Marru
Research Technologies, UITS

Indiana University, USA
smarru@iu.edu

Marlon Pierce
Research Technologies, UITS

Indiana University, USA
marpierc@iu.edu

Abstract—eScience middleware frameworks integrating multi-
ple virtual organizations must incorporate comprehensive user
identity and access management solutions. In this paper we
examine usage patterns for a multi-tenanted distributed system
and map these to widely used security standards and approaches.
Usability is as important a design feature as standard compliance
in our considerations. While the contributions of this paper are
generally applicable to the eScience community, to make the ar-
guments concrete and pragmatic, we focus on science gateways, a
class of distributed system cyberinfrastructure. Science gateways
are end user environments that provide access to a wide range
of academic and commercial computing and storage resources
for virtual organizations. Successful gateways focus on specific
scientific communities and domains, but they build on many
reusable features that can be provided by general purpose hosted
science gateway platform services that can support multiple
science gateway tenants. Providing a security framework for
identity and access management for such hosted service is a
key feature, as it removes the burden for each gateway to
handle its user identity management and control access to its
critical resources; from the resource provider’s point of view, it
provides a basis for more uniform accounting and auditability.
This however is a challenging problem when one considers the
range of gateways (both legacy and newly created), the range
of technologies used to build gateways, and the range of end
user access points (Web, mobile, desktop, and programmatic API
clients) that gateways provide. This paper describes our approach
for providing a unified identity and access management solution
for a multi-tenanted e-Science platform for science gateways with
diverse Virtual Organizations (VOs) that is based on the open
source Apache Airavata software. We examine three common
gateway types based on where the user identity information is
actually maintained (platform-maintained, gateway-maintained,
and third party-maintained) and how these can be treated in
a unified manner. We also examine authorization requirements
for user requests in each gateway when accessing resources in
Airavata API and options of policy-based API-level authorization.
We describe how these are implemented for specific Apache
Airavata client gateways. Our solutions for identity and access
management are not specific to Apache Airavata but can be
generally applied to any e-Science platform.

Index Terms—science gateways, identity management, access
management, distributed systems security, apache airavata

I. INTRODUCTION

Science Gateways [1], [2], [3] [4] are user environments
and supporting services that help researchers make effective,

optimal, and enhanced use of a diverse set of distributed
computing, storage, and related resources. Many successful
gateways target specific user communities, such as bioinfor-
matics [5], computational chemistry [6], and nanotechnology
[7]. Gateways, in effect, serve as Virtual Organizations, bro-
kering access for their users to a broad collection of resources
from different, often unaffiliated resource providers including
campus grids, national scale cyberinfrastructure, and commer-
cial cloud vendors. Thus, identity management, authentication,
and authorization are critical capabilities that a gateway must
provide. Security management is one example of the general-
purpose features that underlie many domain specific gateways.
Other examples include job and workflow management, data
and provenance management, and information monitoring and
auditing. Thus an important architectural trend is for gateways
serving specific Virtual Organizations to use hosted, general
purpose gateway platform services. The goal of the Apache
Airavata project [8], [9], [10], [11] is to implement and
integrate many of these general purpose services into a com-
mon framework that can be run as a multi-tenanted platform
service that can serve multiple gateways simultaneously. In
Apache Airavata, these services are implemented by multiple
components (see [10]) but are exposed through a common API
and a single, logical connection point, the API Server. Here,
we describe the design and implementation needed to secure
the interactions between the gateway client and the Apache
Airavata API Server. Figure 1 summarizes how Airavata
interacts with client gateways and remote resources. All traffic
between the gateways goes to Airavata’s API Server, which
hands off messages for internal routing. Managing identities
and authorizing API invocations between the gateways and the
API Server are the subjects of this paper.

Science gateway tenants to Apache Airavata services run
remotely and are typically under the control of the gate-
way provider. Gateway clients interact with Apache Airavata
through an Apache Thrift-based API. For an overview of
the API, see [8]. The Thrift-defined API and data models
allow Airavata to provide client SDKs in many programming
languages including Java, PHP, Python and C++. These SDKs
provide a programming language-neutral encoding, and mar-



Fig. 1. Multi-tenanted eScience Middleware

shal and unmarshal over-the-network communications between
the gateway and the Airavata server. Our technical challenge
is to implement security features over the top of these commu-
nications. We note an additional challenge: gateways are not
always Web-based but may also be desktop or native mobile
applications, or embeddable clients intended to be called
directly from end-user scripts. This introduces a challenge
since Airavata SDKs are distributed directly to the end user’s
device. We cannot assume access is restricted behind a Web
server. In this paper, we discuss the design and implementation
of the solution for securing the Airavata API. This includes
authenticating and authorizing end users into the Airavata API,
based on different types of identified use cases that depend
on the different types of user identity management scenarios
in gateways. The primary contributions of this paper are the
identification of general patterns in gateway identity manage-
ment, mapping of these patterns to widely adopted OAuth2
scenarios, identifying a flexible approach to role-based access
using XACML policies, and implementing these solutions.
We examine the implementation using three gateways that are
clients to hosted Apache Airavata services.

II. PROBLEM DEFINITION

Apache Airavata is multi-tenanted science gateway middle-
ware that can be used by different types of science gateways as
a platform to create, execute and monitor jobs and workflows
on a diverse range of backend computing resources. Airavata
provides both user-level functions and administrator level-
functions. User-level operations are organized into “experi-
ments” that contain all the information about a job request.
Administrator-level operations include managing metadata de-
scriptions of compute resources and scientific applications.
Airavata uses this metadata to generate job requests on specific
target compute resources, so this is not something a typical
user should modify, although it may be something some users
want to view. Incorrect modifications will break the resource or
application for all users of a gateway tenant. Other privileged
operations include accessing the experiment metadata for
all users. This is useful for debugging problems when job
submission requests fail. Thus, all API calls to the Airavata
server a) should be authenticated, b) should be traceable to
specific user identities, and c) should only be invoked by
users with the required privilege levels or roles. Furthermore,
these security considerations should be applied at the gateway
tenant level, and tenants should be run in virtual isolation.
At this time, we do not consider issues such as the ability

of certain users to access certain resources or applications, or
the ability of users to share experiments. Group based sharing
is an important future work, but here we focus on securing
the API calls themselves and enforcing authorization at user
level. Previously, the end users who interacted with Airavata
API through such gateways were only authenticated and
authorized at the gateway level, and no validation was done
at the Airavata API level. The security model was based on
the trust relationship between gateway software and Airavata
middleware by restricting access to the Airavata API only
from pre-validated web-based gateway clients using firewall
rules, TLS mutual authentication, and similar approaches.
Hence, there was no notion of user identity maintained within
Airavata. This approach was reviewed with the Center for
Trustworthy Scientific Cyberinfrastructure and determined to
be operationally acceptable [12]. However, the approach does
not scale to a large number of gateways, it does not address
the issue of securing native client (desktop and mobile) access
to the Airavata API, it does not enable a uniform approach to
user-level tracking of API calls, and it is not satisfying from
the architectural point of view. When designing a solution
to address the aforementioned requirements, there are three
different identity management scenarios that we must consider
for gateway clients to Airavata services.

• Scenario 1: The gateway client does not have a user store
and would like to depend on Airavata to provide user
management features. This is most common for a new
gateway that may not have completed its implementation
or gone into full operations.

• Scenario 2: The gateway has a user store and in-house
identity management mechanisms. In this scenario, dif-
ferent gateways have different preferences on the level at
which they share user identity information with Airavata.
This is typical of mature gateways.

• Scenario 3: The gateway does not have a dedicated user
store but authenticates users into the gateway using some
federated identity provider such as InCommon using
mechanisms such as SAML SSO, OpenID, and OAuth.

We must be able to provide a unified identity management
solution that can meet the requirements of the above use
cases and provide proper Airavata API security that can be
seamlessly adopted by all types of gateways including web
based and native (desktop and mobile) clients. The proposed
security solution should also facilitate multi-tenancy within
hosted Airavata services as a first class feature.

III. SOLUTION OVERVIEW

When devising a solution, one option that we considered
was to provide user authentication at the gateway layer using
the authentication protocol of the gateway’s choice, and use
the system-to-system authentication mechanism between the
gateway and the Airavata server. Examples of two of the
system-to-system authentication mechanisms that can be used
are mutual authentication using SSL certificates and basic
authentication (i.e: Gateway credentials over TLS). The main



Fig. 2. High level overview of the solution

drawback of the certificate-based mutual authentication ap-
proach is that it is not scalable from the management point of
view. Each gateway can have different types of applications
(web, native), and ideally each of these applications should
have different credentials. When the number of Airavata
gateway clients increase, management of gateway credentials
and PKI infrastructure is not scalable for the API server
as enrollment, certificate issuance, and certificate revocation
become tedious for large number of gateways [13]. Also, both
of these approaches can be used only for web based gateways,
where credentials or certificates can be securely maintained in
a web server. They are not secure enough to be used in native
clients as a potential malicious user can reverse engineer the
client and gain access to the credentials/keys. One way to
facilitate native clients using these approaches is to route the
requests from native clients via a proxy server and establish
the mutual trust between the proxy server and Airavata using
gateway credentials or certificates. This requires extra effort
from gateway developers and is also not an elegant solution as
end user information required by Airavata needs to be passed
to the Airavata API Server by the clients with every API
request.

The other option that we considered and adopted is to
use OAuth 2.0 based authorization delegation [14] to the
gateway by the user authenticated at the gateway. The main
advantage of this approach is scalability. This approach does
not require any management of gateway credentials or PKI
infrastructure. The OAuth access tokens can be generated
by a separate dedicated authorization server and not by the
API Server. This approach also benefits from wider adoption
in the general “Software as a Service” and “Platform as a
Service” communities to which science gateways and gateway
frameworks like Airavata belong. OAuth 2.0 is the de-facto
standard for access delegation. It can be used in conjunction
with existing authentication protocols such as SAML 2.0
based single sign on via the OAuth 2.0 extension profiles.
Even though OAuth is an authorization delegation protocol,
authentication of users can be done using OpenID - Connect
[15], which is an authentication protocol that runs on top
of OAuth 2.0. Hence OpenID-Connect + OAuth 2.0 can

be used as a comprehensive authentication and authorization
protocol. The advantages of the OAuth 2.0 approach led us
to implement it as the authorization delegation solution to
our problem. Figure 2 illustrates the high level architecture of
the solution with mappings to the standard OAuth 2.0 based
authorization-delegation solution architecture. Because OAuth
2.0 and related technologies are widely adopted, we chose to
integrate a third party service with our solution rather than
develop it ourselves. Our solution makes use of the identity
management features offered by WSO2 Identity Server (IS)
[16]. WSO2 IS is a widely used open source (Apache V2
License) identity management system that provides out of the
box support for many identity management standards such as
OAuth/OpenID, SAML SSO, XACML and features such as
multi-factor authentication, password policies, etc. It supports
multi-tenancy, per-tenant user store configuration, and custom
pluggable user store manager extensions, all of which are
relevant to the problems discussed in this paper.

Details of the interactions illustrated in Figure 2 are as
follows. Numbers correspond to the labels of interactions in
the figure.

0) User is authenticated to Airavata. How this is done with
respect to aforementioned three different scenarios is
described in the next section.

1) OAuth token is obtained from the WSO2 IS to access
the Airavata API on behalf of the authenticated user.

2) Request to Airavata (depending on what actions user
wants to perform) are sent along with the obtained
OAuth token.

3) Each request sent to the Airavata API Server is autho-
rized by the Security Manager before it hits the API. The
Security Manager acts as a client within Airavata to var-
ious WSO2 IS services. First the attached OAuth token
is validated and user’s profile information is retrieved.
Then the request is authorized using eXtensible Access
Control Markup Language (XACML) [17] using the
authorization policy which is pre-defined by the gateway
administrator (details to follow).

4) Only the authorized requests are allowed to reach Aira-
vata API.

Authorization of subsequent requests from the same user will
be handled by using caching of authorization decisions in
order to avoid the requirement of contacting the WSO2 IS
for every call to increase performance (see below). The above
solution supports multi-tenancy; when the user identity is
exchanged, it includes the tenant domain that the user belongs
to so that the authentication and authorization is performed
with respect to that tenant domain in WSO2 IS. The same
client side logic to authenticate a user and obtain an OAuth
token can be implemented in web, desktop and mobile clients
using the recommended grant types available in the OAuth
2.0 specification. The next section elaborates more on this
high level solution and how it can be adopted to previously
mentioned three identity management use cases using the
features provided in the WSO2 IS.



IV. SOLUTION IN DETAIL

A. Authenticating User & Obtaining an OAuth 2.0 Access
Token

User authentication and obtaining an access token by the
client application (Step 0 and Step 1 in Figure 2) are the
only steps in the high level solution that differs among the
three scenarios that we identified. Again, we note that we
use OpenID-Connect extensions to the OAuth2 authorization
protocol for authentication. The OAuth 2.0 specifies several
ways (grant types) to obtain an access token by the client app.
Each of these grant types serves a different purpose and is
used in a different way. Depending on the type of application
is being used, the appropriate grant type should be used to
obtain access tokens. The grant types are (1) Authorization
Code grant type, (2) Implicit grant type, (3) Resource Owner
Password grant type, (4) Client Credential grant type, and (5)
Refresh Code grant type. We evaluate each and discuss their
applicability to our scenarios.

The Authorization Code grant type is the recommended
grant type to be used if the client application is capable
of spawning a web browser to redirect the user to the au-
thorization server’s authentication page. The user will sign
in to the authorization server with their credentials and au-
thorize the gateway application to obtain an access token
for the user. This authorization is a one-time-only appli-
cation authorization. If the authorization server authorizes
the request, the user will be redirected back to the client
with a token (called the authorization code) in the query
string (e.g. https://client.com/redirect?code=XYZ123), which
the client application will capture and exchange for an access
token in the background. In order to use this grant type, the
application itself should already be trusted by the authorization
server through some application registration process. The
Implicit grant type is very similar to the Authentication Code
grant type. The difference is that for an Implicit grant type,
the access token is directly returned to the client application
after the user signs in. Implicit grants are for use by clients
that are not capable of keeping the client application’s own
credentials secret. An example is a thick browser client that
uses JavaScript to directly access the Apache Airavata API
methods rather than going through an intermediate Web server.

If the user (resource owner) already trusts the client applica-
tion to provide his/her own credentials, the Authorization Code
grant type is not needed. Resource Owner Password grant type
is an alternative grant type that can be used to simplify the
flow in this case. This grant type is useful in scenarios where
the client application cannot spawn a web browser and the user
trusts the client, such as gateway provided desktop and mobile
client applications. In this grant type instead of redirecting the
user to the authorization server’s authentication page, the client
application itself obtains the user credentials and then sends
these to the authorization server along with the client’s own
credentials. If the authentication is successful then the client
will be issued an access token.

The Client Credential grant type is similar to the Resource
Owner Password grant except only the client application’s cre-
dentials are used to authenticate a request for an access token.
This grant type should only be used by trusted clients. This
grant is suitable for machine-to-machine authentication where
there is no user interaction or user authorization required. In
this grant type we do not need to use OpenID-Connect to
authenticate users as there is no user involvement.

Authorization servers that support Refresh Code grant types
will also issue a refresh token when they return an access token
to a client application. When the access token expires, the
client can use the refresh token to retrieve a new access token
with the same permissions. Now the client has to maintain the
state of each token. This can be done by either periodically
using the active refresh token or by using the refresh token to
acquire a new token after an access failure.

B. Science Gateway Client Scenarios

In the following discussion, we explain how the high-level
solution described in the previous section is adapted to address
three different gateway identity management scenarios and
which of the specific OAuth 2.0 grant types discussed above
should be used to obtain access tokens from the authorization
server. All solutions involve the introduction of a Security
Manager component within Apache Airavata (see Figure 2)
that acts as a client to various WSO2 IS services.

1) The gateway doesn’t have a user store and would like
to depend on Airavata to provide user management features
: The gateway application makes use of the Airavata Client
SDK to create users, which in turn invokes the User Admin
API of the WSO2 IS. When the users are authenticated to the
gateway, their credentials are validated against those stored in
the WSO2 IS user store. The gateway uses Airavata’s client
SDK to authenticate users and obtain OAuth access tokens us-
ing OpenID-Connect. All the client applications are provided
by the gateway itself and no user generated or third party
applications need to connect to Airavata. Thus all gateway
client applications can be considered as trusted clients, and
therefore instead of Authorization Code grant type we use
the Resource Owner Password grant type to obtain access
tokens in both web and native clients. If the web application
is a thick browser based application (browser applications that
directly interact with Airavata API through a JavaScript SDK)
where client credentials can not be securely maintained, the
Implicit grant type should be used and privileges of access
token obtained by this grant type should be highly restricted.

2) The gateway has a user-store and its own, in-house
identity management mechanisms: Here we consider three
solutions to address this scenario based on the differences in
preference of the gateway to share user identity information
with Airavata. In the first category, the gateway will not share
any information about the end user’s identity with Airavata and
will use Airavata only as a job execution engine. Therefore
the gateway client will obtain an OAuth access token by
authenticating to the WSO2 IS. The grant type that is used in
this case is the Client Credential grant type. After retrieving



Fig. 3. Gateway using Airavata provided user store

an access token, end user requests that are sent to Airavata
attach this token (see Figure 4). From Airavata’s point of view
all experiments will be run by one community user account.
In this case the types of gateway applications that can be
supported are limited only to web based gateways where the
client credentials can be securely maintained in the web server.
As native clients cannot securely maintain client credentials,
the requests from those clients should be sent through an
intermediary proxy server that can securely maintain the client
credentials.

Fig. 4. Gateway does not share any user identity information with Airavata

In the second category, the gateway is willing to share user
identity information but does not allow Airavata to connect to
the gateway’s user store. User accounts need to be provisioned
with the identity information required by Airavata. In this case
the gateway makes use of the identity provisioning client in
the Airavata client SDK to provision user accounts to the
identity manager of Airavata (i.e WSO2 IS) at the time of user
creation in the gateway. Already created user accounts in the
gateway user store can be provisioned through a bootstrapping
phase. Invoking the Airavata SDK for user provisioning will in
turn invoke the System for Cross-domain Identity Management
(SCIM) [18] endpoint in WSO2 IS for identity provisioning.
This enables the execution flow of accessing the Airavata API
to be the same as in scenario 1 (see Figure 5). In this category
user information will be duplicated in both the gateway user

store and the WSO2 IS user store. It is the responsibility of
the gateway to maintain them in coherence. After the user
accounts have been provisioned, user authentication, access
token retrieval and the rest of the execution is same as in
Scenario 1.

Fig. 5. Gateway which provision user accounts to the Airavata provided user
store

In the third category, the gateway is willing to share user
identity information. The gateway allows Airavata to connect
to its organizational user store in read-only mode. In this case,
the identity manager of Airavata (i.e WSO2 IS), is connected
to the gateway’s organizational user store through the user
store manager extension provided by the WSO2 IS. This
enables the user authentication, access token retrieval, and the
rest of the execution flow of accessing the Airavata API to
be the same as in scenario 1 (see Figure 6). The WSO2 IS
distribution by default provides user store manager extensions
that can be used to integrate Active Directory and LDAP
based user stores. Custom user store manager extensions can
be written to integrate any custom user store.

Fig. 6. Gateway which allows Airavata to have read only access to the
organizational user store

3) The science gateway does not have a user store but
instead authenticates users into the gateway using a third
party federated identity provider. In this scenario the gateway
becomes a relying party, and it needs to authenticate users
to Airavata through the federated authentication mechanism



that is being used in the gateway community: To solve
this issue, we used the inbound authentication configuration
feature in WSO2 IS. Using this feature, it is possible to
plug external federated authentication providers as inbound
authentication providers to a user store (see Figure 7). Out
of the box, WSO2 IS provides support for OpenID, SAML,
OAuth2/OpenID-Connect, WS Federation, Google, Yahoo,
Microsoft and Facebook federated authentication providers.
For a federated authentication protocol not in the previous
list, it is possible to plug in a custom inbound authentication
provider.

If the federated authentication protocol supports retrieval of
the user’s identity attributes from the identity provider (such
as SAML, OpenID), a user account is created in WSO2 IS
with this identity information using just-in-time provisioning.
Now when a user tries to authenticate to WSO2 IS, the user
can select the configured identity provider and login to that
provider. Once the user is authenticated via the federated
identity management protocol, an OAuth access token is
generated in WSO2 IS that has access to the Airavata API,
and the rest of the flow of execution continues in the same
way as in other cases. Since federated authenticators most of
the time support only web-based access, a web based OAuth
2.0 grant type such as Authorization Code grant or in the case
of thick web clients Implicit grant type should be used. Native
clients are now required to spawn an embedded browser for
user authentication and extract the access token.

Fig. 7. Gateways which want to use federated identity provider.

C. Role Based Fine Grained User Authorization using
XACML

All the requests that are sent to the Airavata API Server go
through Security Manager before API methods are invoked
in the API Server. As per Step 3 of the high level solution
overview (Figure 2), the Security Manager first validates the
OAuth token attached to the request. This guarantees that the
request comes from an authenticated user who has obtained
a valid OAuth access token. In addition to validating that the
request is coming from an authorized user, we also validate
that the user has privileges to access the given API method.
Through our reviews of existing gateways, we found that each

gateway has its own user role hierarchy. Based on this user
role hierarchy, the privileges of each user role will be different.
For example, in a typical gateway there will be gateway
admins who administer all gateway related configurations such
as application and computer resource registrations. Regular
gateway users will only need to access API methods for man-
aging computational experiments. Based on the roles assigned
to the user, privileges should be restricted when accessing
the Airavata API. Instead of creating a global user role
hierarchy and set of predefined user privileges for all gateways,
we chose the XACML (eXtensible Access Control Markup
Language) [17] feature available in the WSO2 IS. XACML
is the de-facto standard for fine grained, policy-based access
control. This approach allows different gateway tenants to have
different, customized policies. Policy-based access control is
more flexible than backing the authorization logic into the
code of Security Manager. Gateways might have different
authorization rules based on their tenant in Airavata. The
implementation is based on the fully fledged implementation
of XACML reference architecture in WSO2 IS. Three main
components of XACML reference architecture that are used
in this solution are Policy Administration Point (PAP), Policy
Deployment Point (PDP), and Policy Enforcement Point (PEP)
(see Figure 8).

• PAP facilitates defining, updating and publishing the
authorization policies. Gateways use this feature directly.
Figure 8 illustrates the involvement of PAP for defining
the authorization policies by the gateway administrator.
The gateway makes use of the Airavata client for this,
which in turn invokes the XACML PAP API of WSO2
IS. XACML roles can also be defined within the WSO2
IS user interface.

• PEP is where the authorization is actually enforced on
the API requests. Airavata’s Security Manager handles
these operations. Upon intercepting a request sent to
Airavata API, the PEP forms a XACML authorization
request including the information related to the current
API request (such as user identity, name of the API
function or resource that was requested), and then it sends
that XACML authorization request to the PDP.

• PDP is the XACML policy engine of WSO2 IS. The
PDP evaluates the authorization request sent by the PEP
against the policy defined by the gateway administrator
and returns the authorization decision back to the PEP.
Based on this decision, the PEP (in Security Manager)
allows or denies the API request that it intercepted.

Fig. 8. Using XACML for role based fine grained access control



Using XACML we can define role based access control
rules per gateway, with each gateway as a tenant in WSO2 IS.
The rules are defined in XML; WSO2 IS provides graphical
tools can be used to create these rules. Figure 9 shows a set
of sample rules that is used to define XACML rules for the
“Gateway User” role.

Fig. 9. Sample XACML rules for Gateway User role

D. Securing the Inter Component Communication

It is critical to secure the communication between (1)
Gateways and WSO2 IS, (2) Gateways and Airavata and (3)
Airavata and WSO2 IS, as illustrated in Figure 2. Communica-
tion between the Airavata client at the gateway and the WSO2
IS involves requests that invoke the critical administration
services of WSO2 IS, such as User Admin API, XACML PAP
API, and the OAuth 2.0 token issuer endpoint. The requests
invoking WSO2 IS administrative services are authenticated
with the IS tenant admin-credentials and are sent over TLS,
as per the default settings of WSO2 IS. All the OAuth 2.0
endpoints in IS are exposed as HTTPS endpoints by default.
The same is true for communication between the Security
Manager and the gateway client and the WSO2 IS. All the
Airavata API calls from the Gateway to the Airavata API
are made over TLS and require an OAuth access token as a
mandatory parameter. The communication between Security
Manager and WSO2 IS for validating access tokens and
XACML policies are authenticated with the corresponding IS
tenant admin-credentials and should be sent over TLS.

V. IMPLEMENTATION AND EVALUATION

Every Apache Airavata API method definition was changed
to incorporate an additional mandatory field nameed Au-
thzToken, which contains the OAuth access token and the
Airavata tenant ID information that is set at the gateway
client layer. In the implementation to process this token, we
added the aforementioned Security Manager (See [19]) to the
Airavata API Server. The Security Manager is the cornerstone
of Airavata’s security implementation. This new component is
designed to be pluggable so that we can change it if required
without affecting the rest of Airavata. The main function of the
Security Manager is to intercept all API requests and validate

them from the separately hosted WSO2 Identity Server, which
acts as the Authorization Server for Airavata. For intercepting
the API requests the Security Manager uses annotations sup-
ported by the Google Guice library [20], which are added
to every API method in API server. As mentioned in the
solution section, the authorization validation at the Security
Manager is a two step process. First the OAuth access token
is validated by calling the OAuth token validator endpoint in
WSO2 IS, and then the authorization policy is enforced by
invoking XACML PEP in WSO2 IS. When invoking both of
these endpoints, the requests need to be authenticated using
HTTP basic authentication by providing the respective tenant’s
admin credentials in WSO2 IS. Therefore, Airavata needs to
know and store the respective credentials for IS tenants. For
this we used the credential store server within Airavata [21].
Gateway administrators can store their IS tenant credentials
by updating the GatewayProfile object in Airavata. OAuth 2.0
mandates sending the access tokens over TLS. Therefore, the
communication shown in Step 2 of Figure 2 happens over
TLS. With this feature of the solution, Airavata is shipped
with a default key store (airavata.jks) that is found in the bin
directory of the server distribution. It should be replaced with
the organization’s key store in a production deployment. Com-
munication between the Airavata server and WSO2 IS also
happens over TLS. The client-truststore.jks in the bin directory
of the server distribution contains the public certificates of
both Airavata and WSO2 IS, which is used in the client side
code which invokes Airavata and WSO2 IS. Ideally, every
Airavata API request should be validated against the WSO2
IS as shown in Step 3 in Figure 3. However, we found that this
imposes a significant performance overhead (about 350 ms) on
the Airavata API method latency. Figure 10 shows latency for
some of the commonly used API methods. Results for other
API methods are comparable. To overcome this issue we added
an authorization cache module into the Security Manager
that caches the authorization decisions for each access token-
tenant-API method combination after successful validation
from WSO2 IS. Subsequent API requests to the API Server
from the same user are checked in the authorization cache
instead of directly invoking the IS validation endpoints. The
caching duration of each authorization decision is set to the
remaining valid duration of the corresponding OAuth access
token, which can be obtained from the OAuth token validation
response when invoking IS for validation. This OAuth token
validation response contains various user attributes such as
username and email that are also cached and made avail-
able during the execution of the API methods by using the
thread local object. After enabling the authorization cache, the
security enforcement overhead was drastically reduced. The
performance tests were done for Scenario 1 (see Figure 3)
deployment using MySQL backend as the tenant user store
in WSO2 IS. Gateway client, Airavata server, and WSO2 IS
server were running on three different machines within the
same local area network.

We have implemented the designs described here to support
several science gateway tenants to Apache Airavata. The



Fig. 10. API method latencies

SEAGrid science gateway [22] is undergoing a technology
refresh and wanted to use Apache Airavata-provided identity
management; hence it is an example of a Scenario 1 tenant.
SEAGrid is using a MySQL database as the user store in
WSO2 IS and provides a web based gateway and a desktop
client. Both of these clients use the Resource Owner Password
grant type in OAuth 2.0 specification to authenticate users and
retrieve access tokens as both are trusted clients. SEAGrid
has four user roles in its role hierarchy: a) gateway-admin,
b) read-only-gateway-admin, c) gateway-user and d) pending-
user. The gateway-admin role is the superuser in SEAGrid and
has privileges such as the ability to add, modify and delete
resources and applications, the ability to manage users, and
access to gateway-wide administrative dashboards. The read-
only-gateway-admin role can view the gateway configuration
parameters and dashboards but cannot make any changes. The
gateway-user role is assigned to regular users, and the pending-
user role is assigned to new users who are not yet approved to
use the gateway. These authorization policies are enforced in
SEAGrid using XACML as described in the previous section.

Another client is a USDA-funded science gateway, currently
under development, for accessing bioinformatics applications
on USDA-provided resources. Unlike SEAGrid, this client
wanted to integrate the user management with the existing
USDA user store so that the users can use their existing
credentials to access the gateway. Thus this falls to the Cate-
gory 3 of Scenario 2 in the above mentioned taxonomy. The
existing USDA user store is an LDAP server and hence it was
straightforward to integrate with IS using its already provided
LDAP user store manager extension. This gateway has only a
web based portal, so a Resource Owner Password grant type
was used for authentication and access token retrieval. This
gateway also has a similar role hierarchy to SEAGrid and uses
a similar authorization policy.

The UltraScan science gateway [23] is a longstanding
client for Apache Airavata services; this integration predates
the work described in this paper. Ultrascan has its own user

store and wanted to use Airavata only as a job execution
management engine and does not currently share any user
information with Airavata. Thus, this falls to the Category 1
in Scenario 2 in our taxonomy. As described in the solution
section, Client Credential grant type is used to retrieve an
access token that is used to submit API requests to Airavata.
Although UltraScan provides native clients, supporting them
through this model was not an issue as the requests from
those clients were sent via an intermediary proxy server that
comes from the previous architecture. This intermediary server
is capable of securely maintaining gateway client’s credentials.

VI. RELATED WORK

Science gateway security, especially the aspect of user
credential management for individual gateways, is a well
studied area. In the early stages, the most widely adopted
approach was to assign per user credentials for computing
resources. Whenever a gateway user wanted to submit a job
to a remote compute resource, the gateway middleware had
to use that particular user’s credentials on the remote host for
authentication. Per user grid certificates, MyProxy and various
variations of MyProxy service such as OAuth for MyProxy
[24], CILogon for MyProxy and the MyProxy Gateway were
the most popular implementations of this approach [25].
Other implementations of this approach such as Security As-
sertion Markup Language based Single-Sign-On (SAML SSO)
implementation in MoSGrid science gateway can be found
in literature [26]. As the number of science gateway users
grew, the community soon came to realize that the per user
credential mechanism does not scale well. To avoid unscalable
manual overhead of new user approval, user credential issuing
and credential revocation, the science gateway Authentication,
Authorization, Auditing and Accounting (AAAA) model [27]
was designed; XSEDE uses a simplified version of this model
in production.

The main idea of the AAAA model was to adopt com-
munity user accounts and avoid using per user credentials to
authenticate to the remote resources. This significantly reduces
the effort required for user management tasks in compute re-
sources as now there are a limited number of science gateway
community accounts. This approach outsources gateway user
management tasks to the gateway layer itself. In this model,
multiple gateway users share the same community account to
submit jobs to compute resources. Apache Airavata and its
client gateways use this model, and thus it is very important
that Airavata implement and practice proper user AAAA.
Within Airavata, community credential management is done
by the credential store component [21].

In this paper we describe how gateway user identity man-
agement can be implemented in Airavata as a generic feature
that can facilitate diverse use cases of different gateways.
Based on our use cases, the Center for Trustworthy Cyberin-
frastructure (CTSC) has evaluated various authentication and
authorization schemes such as username-password, kerberos,
X509, API keys and OAuth, and has suggested that OAuth 2.0



is both viable and secure method to implement authentication
and authorization in multi-tenanted services like Airavata [21].

Globus Nexus [28] is a very similar system to the WSO2
IS that is used in our solution. It is a “platform as a service”
application that provides user identity management, profile
management and group management features. Its identity
management capabilities allow users to create a unique Globus
identity that can be associated with federated external identi-
ties from campus identity providers (e.g CILogon), computing
resource identity providers (XSEDE accounts using MyProxy
OAuth), and commercial identity providers such as Google.
This Globus Identity can be consumed by subscribing applica-
tions using an OAuth-based workflow to create a Single-Sign-
On environment. Globus Nexus provides group management
capabilities, and groups can be used to enforce authorization
policies. The main difference between Globus Nexus and
WSO2 IS is that Nexus can be only integrated with federated
identity providers whereas WSO2 IS can be integrated with
variety of user store such as LDAP, Active Directory and
custom RDBMS based stores using the user store manager
extensions provided. As of now Globus Nexus lacks support
for System For Cross Domain Identity Management (SCIM)
that is needed for some of the gateway scenarios that we iden-
tified. Globus Nexus also lacks support for XACML, which we
found useful for providing per-gateway policies. It is possible
that these scenarios could be implemented with Globus Nexus
by mapping them to groups. Finally, Globus Nexus is a hosted
service, whereas WSO2 IS is downloadable software that is
also available as a for-fee service. This difference introduces
tradeoffs that gateways and gateway platform service providers
should consider.

VII. CONCLUSIONS AND FUTURE WORK

The most significant advance in gateway architectures over
the last several years is the use of hosted, general purpose
gateway platform services, typically for task and workflow
execution and data management, that interact with multiple
gateway clients, or tenants. This paper examines the over-
the-wire access patterns that exist between a wide range
of gateway clients and multi-tenanted platform services like
Apache Airavata. These patterns were then mapped to OAuth
2 grant types. We also examined fine-grained role based
authorization requirements for gateways, mapping the role
based access control to XACML policies. Finally, we de-
scribed an implementation that can support all the scenarios
that we identified. We summarized three current clients to
hosted Apache Airavata platform services and mapped these
to specific scenarios. The implementation code described here
is open source and available through Apache Airavata’s Git
repository under the Apache Software License, version 2; see
airavata.apache.org.

ACKNOWLEDGMENT

This work was supported by NSF award #1339774 “Col-
laborative Research: SI2-SSI: Open Gateway Computing En-
vironments Science Gateways Platform as a Service (OGCE

SciGaP)”. S. N. and H. G. were supported by Google Summer
of Code. We thank the Center for Trustworthy Scientific
Cyberinfrastructure (NSF awards #1234408 and #1547272)
for their extensive consultations on this work, which is sum-
marized at http://trustedci.org/scigap/. S. N. and H. G. made
equal contributions to this paper and should be considered co-
principal authors.

REFERENCES

[1] K. A. Lawrence, M. Zentner, N. Wilkins-Diehr, J. A. Wernert, M. Pierce,
S. Marru, and S. Michael, “Science gateways today and tomorrow: pos-
itive perspectives of nearly 5000 members of the research community,”
Concurrency and Computation: Practice and Experience, vol. 27, no. 16,
pp. 4252–4268, 2015.

[2] S. Gesing and N. Wilkins-Diehr, “Science gateway workshops 2014
special issue conference publications,” Concurrency and Computation:
Practice and Experience, vol. 27, no. 16, pp. 4247–4251, 2015.

[3] N. Wilkins-Diehr, S. Gesing, and T. Kiss, “Science gateway workshops
2013 special issue conference publications,” Concurrency and Compu-
tation: Practice and Experience, vol. 27, no. 2, pp. 253–257, 2015.

[4] P. Kacsuk, Science Gateways for Distributed Computing Infrastructures.
Springer, 2014.

[5] E. Afgan, J. Goecks, D. Baker, N. Coraor, A. Nekrutenko, J. Taylor,
G. Team et al., “Galaxy: A gateway to tools in e-science,” in Guide to
e-Science. Springer, 2011, pp. 145–177.

[6] R. Dooley, G. Allen, and S. Pamidighantam, “Computational chemistry
grid: Production cyberinfrastructure for computational chemistry,” in
Proceedings of the 13th Annual Mardi Gras Conference, 2005, p. 83.

[7] G. Klimeck, M. McLennan, S. P. Brophy, G. B. Adams III, and
M. S. Lundstrom, “nanohub. org: Advancing education and research in
nanotechnology,” Computing in Science & Engineering, vol. 10, no. 5,
pp. 17–23, 2008.

[8] M. Pierce, S. Marru, B. Demeler, R. Singh, and G. Gorbet, “The apache
airavata application programming interface: overview and evaluation
with the ultrascan science gateway,” in Proceedings of the 9th Gateway
Computing Environments Workshop. IEEE Press, 2014, pp. 25–29.

[9] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler
et al., “Apache airavata: a framework for distributed applications and
computational workflows,” in Proceedings of the 2011 ACM workshop
on Gateway computing environments. ACM, 2011, pp. 21–28.

[10] S. Marru, M. Pierce, S. Pamidighantam, and C. Wimalasena, “Apache
airavata as a laboratory: architecture and case study for component-
based gateway middleware,” in Proceedings of the 1st Workshop on The
Science of Cyberinfrastructure: Research, Experience, Applications and
Models. ACM, 2015, pp. 19–26.

[11] Apache, “Apache airavata,” http://airavata.apache.org/.
[12] R. Heiland, J. Basney, and V. Welch, “Suggested security practices for

scigap: A preliminary report,” http://hdl.handle.net/2022/20811.
[13] P. Gutmann, “Pki: it’s not dead, just resting,” Computer, vol. 35, no. 8,

pp. 41–49, 2002.
[14] D. Hardt, “The oauth 2.0 authorization framework,” 2012.
[15] N. Sakimura, J. Bradley, M. Jones, B. de Medeiros, and C. Mortimore,

“Openid connect core 1.0,” The OpenID Foundation, p. S3, 2014.
[16] W. Inc, “Wso2 identity server: The first enterprise identity bus,” http:

//wso2.com/products/identity-server/.
[17] S. Godik, A. Anderson, B. Parducci, P. Humenn, and S. Vajjhala, “Oasis

extensible access control 2 markup language (xacml) 3,” Tech. rep.,
OASIS, Tech. Rep., 2002.

[18] K. Grizzle, E. Wahlstroem, C. Mortimore, and P. Hunt, “System for
cross-domain identity management: Core schema,” System, 2015.

[19] A. Airavata, “Apache airavata security implementation,”
https://github.com/apache/airavata/tree/master/airavata-api/
airavata-api-server/src/main/java/org/apache/airavata/api/server/security.

[20] R. Vanbrabant, Google Guice: agile lightweight dependency injection
framework. Apress, 2008.

[21] T. A. Kanewala, S. Marru, J. Basney, and M. Pierce, “A credential
store for multi-tenant science gateways,” in Cluster, Cloud and Grid
Computing (CCGrid), 2014 14th IEEE/ACM International Symposium
on. IEEE, 2014, pp. 445–454.



[22] Y. Fan, S. Pamidighantam, and W. Smith, “Incorporating job predictions
into the seagrid science gateway,” in Proceedings of the 2014 Annual
Conference on Extreme Science and Engineering Discovery Environ-
ment. ACM, 2014, p. 57.

[23] B. Demeler and G. E. Gorbet, “Analytical ultracentrifugation data
analysis with ultrascan-iii,” in Analytical Ultracentrifugation. Springer,
2016, pp. 119–143.

[24] J. Basney, R. Dooley, J. Gaynor, S. Marru, and M. Pierce, “Distributed
web security for science gateways,” in Proceedings of the 2011 ACM
workshop on Gateway computing environments. ACM, 2011, pp. 13–
20.

[25] J. Basney, J. Gaynor, S. Marru, M. Pierce, T. A. Kanewala, R. Dooley,
and J. Stubbs, “Integrating science gateways with xsede security: A
survey of credential management approaches,” in Proceedings of the
2014 Annual Conference on Extreme Science and Engineering Discovery
Environment. ACM, 2014, p. 58.

[26] S. Gesing, R. Grunzke, J. Krüger, G. Birkenheuer, M. Wewior,
P. Schäfer, B. Schuller, J. Schuster, S. Herres-Pawlis, S. Breuers et al.,
“A single sign-on infrastructure for science gateways on a use case for
structural bioinformatics,” Journal of Grid Computing, vol. 10, no. 4,
pp. 769–790, 2012.

[27] J. Basney, V. Welch, and N. Wilkins-Diehr, “Teragrid science gateway
aaaa model: implementation and lessons learned,” in Proceedings of the
2010 TeraGrid Conference. ACM, 2010, p. 2.

[28] K. Chard, M. Lidman, B. McCollam, J. Bryan, R. Ananthakrishnan,
S. Tuecke, and I. Foster, “Globus nexus: A platform-as-a-service
provider of research identity, profile, and group management,” Future
Generation Computer Systems, vol. 56, pp. 571–583, 2016.


